定位公式

L. Tu
{"title":"定位公式","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.36","DOIUrl":null,"url":null,"abstract":"This chapter highlights localization formulas. The equivariant localization formula for a torus action expresses the integral of an equivariantly closed form as a finite sum over the fixed point set. It was discovered independently by Atiyah and Bott on the one hand, and Berline and Vergne on the other, around 1982. The chapter describes the equivariant localization formula for a circle action and works out an application to the surface area of a sphere. It also explores some equivariant characteristic classes of a vector bundle. These include the equivariant Euler class, the equivariant Pontrjagin classes, and the equivariant Chern classes.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"1998 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Localization Formulas\",\"authors\":\"L. Tu\",\"doi\":\"10.2307/j.ctvrdf1gz.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter highlights localization formulas. The equivariant localization formula for a torus action expresses the integral of an equivariantly closed form as a finite sum over the fixed point set. It was discovered independently by Atiyah and Bott on the one hand, and Berline and Vergne on the other, around 1982. The chapter describes the equivariant localization formula for a circle action and works out an application to the surface area of a sphere. It also explores some equivariant characteristic classes of a vector bundle. These include the equivariant Euler class, the equivariant Pontrjagin classes, and the equivariant Chern classes.\",\"PeriodicalId\":272846,\"journal\":{\"name\":\"Introductory Lectures on Equivariant Cohomology\",\"volume\":\"1998 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introductory Lectures on Equivariant Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvrdf1gz.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本章重点介绍了本地化公式。环面作用的等变局部化公式将一个等闭形式的积分表示为不动点集上的有限和。它是在1982年左右由阿蒂亚和博特、伯林和韦尔涅分别独立发现的。本章描述了圆作用的等变定位公式,并给出了在球表面积上的应用。本文还探讨了向量束的一些等变特征类。这些类包括等变Euler类、等变Pontrjagin类和等变Chern类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localization Formulas
This chapter highlights localization formulas. The equivariant localization formula for a torus action expresses the integral of an equivariantly closed form as a finite sum over the fixed point set. It was discovered independently by Atiyah and Bott on the one hand, and Berline and Vergne on the other, around 1982. The chapter describes the equivariant localization formula for a circle action and works out an application to the surface area of a sphere. It also explores some equivariant characteristic classes of a vector bundle. These include the equivariant Euler class, the equivariant Pontrjagin classes, and the equivariant Chern classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信