Daniel Fajardo-Delgado, José Alberto Fernández-Zepeda, A. Bourgeois
{"title":"基于偏好的匿名树随机自稳定领导选举","authors":"Daniel Fajardo-Delgado, José Alberto Fernández-Zepeda, A. Bourgeois","doi":"10.1142/S0129054112400394","DOIUrl":null,"url":null,"abstract":"The performance of processors in a distributed system can be measured by parameters such as bandwidth, storage capacity, work capability, reliability, manufacture technology, years of usage, among others. An algorithm using a preference-based approach uses these parameters to make decisions. In this paper we introduce a randomized self-stabilizing leader election algorithm for preference-based anonymous trees. Our algorithm uses the preference of the processors as criteria to select a leader under symmetric or non-symmetric configurations. It is partially inspired on Xu and Srimani's algorithm, but we use a distributed daemon and randomization to break symmetry. We prove that our algorithm has an optimal average complexity time and performed simulations to verify our results.","PeriodicalId":329280,"journal":{"name":"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Randomized self-stabilizing leader election in preference-based anonymous trees\",\"authors\":\"Daniel Fajardo-Delgado, José Alberto Fernández-Zepeda, A. Bourgeois\",\"doi\":\"10.1142/S0129054112400394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of processors in a distributed system can be measured by parameters such as bandwidth, storage capacity, work capability, reliability, manufacture technology, years of usage, among others. An algorithm using a preference-based approach uses these parameters to make decisions. In this paper we introduce a randomized self-stabilizing leader election algorithm for preference-based anonymous trees. Our algorithm uses the preference of the processors as criteria to select a leader under symmetric or non-symmetric configurations. It is partially inspired on Xu and Srimani's algorithm, but we use a distributed daemon and randomization to break symmetry. We prove that our algorithm has an optimal average complexity time and performed simulations to verify our results.\",\"PeriodicalId\":329280,\"journal\":{\"name\":\"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129054112400394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129054112400394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Randomized self-stabilizing leader election in preference-based anonymous trees
The performance of processors in a distributed system can be measured by parameters such as bandwidth, storage capacity, work capability, reliability, manufacture technology, years of usage, among others. An algorithm using a preference-based approach uses these parameters to make decisions. In this paper we introduce a randomized self-stabilizing leader election algorithm for preference-based anonymous trees. Our algorithm uses the preference of the processors as criteria to select a leader under symmetric or non-symmetric configurations. It is partially inspired on Xu and Srimani's algorithm, but we use a distributed daemon and randomization to break symmetry. We prove that our algorithm has an optimal average complexity time and performed simulations to verify our results.