自动机级联分解复杂度的紧界

O. Maler, A. Pnueli
{"title":"自动机级联分解复杂度的紧界","authors":"O. Maler, A. Pnueli","doi":"10.1109/FSCS.1990.89589","DOIUrl":null,"url":null,"abstract":"Exponential upper and lower bounds on the size of the cascaded (Krohn-Rhodes) decomposition of automata are given. These results are used to obtain elementary algorithms for various translations between automata and temporal logic, where the previously known translations were nonelementary. The relevance of the result is discussed.<<ETX>>","PeriodicalId":271949,"journal":{"name":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","volume":"461 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Tight bounds on the complexity of cascaded decomposition of automata\",\"authors\":\"O. Maler, A. Pnueli\",\"doi\":\"10.1109/FSCS.1990.89589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exponential upper and lower bounds on the size of the cascaded (Krohn-Rhodes) decomposition of automata are given. These results are used to obtain elementary algorithms for various translations between automata and temporal logic, where the previously known translations were nonelementary. The relevance of the result is discussed.<<ETX>>\",\"PeriodicalId\":271949,\"journal\":{\"name\":\"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science\",\"volume\":\"461 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSCS.1990.89589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSCS.1990.89589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

给出了自动机级联(Krohn-Rhodes)分解大小的指数上界和下界。这些结果用于获得自动机和时间逻辑之间各种转换的基本算法,其中先前已知的转换是非基本的。讨论了结果的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight bounds on the complexity of cascaded decomposition of automata
Exponential upper and lower bounds on the size of the cascaded (Krohn-Rhodes) decomposition of automata are given. These results are used to obtain elementary algorithms for various translations between automata and temporal logic, where the previously known translations were nonelementary. The relevance of the result is discussed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信