Hyun-kyo Lim, Ju-Bong Kim, Joo-Seong Heo, Kwihoon Kim, Yong-Geun Hong, Youn-Hee Han
{"title":"基于包的深度学习网络流量分类","authors":"Hyun-kyo Lim, Ju-Bong Kim, Joo-Seong Heo, Kwihoon Kim, Yong-Geun Hong, Youn-Hee Han","doi":"10.1109/ICAIIC.2019.8669045","DOIUrl":null,"url":null,"abstract":"Recently, the advent of many network applications has led to a tremendous amount of network traffic. A network operator must provide quality of service for each application on the network. To accomplish this goal, various studies have focused on accurately classifying application network traffic. Network management requires technology to classify network traffic without the intervention of the network operator. In this study, we generate packet-based datasets through our own network traffic pre-processing. We train five deep learning models using the convolutional neural network (CNN) and residual network (ResNet) to perform network traffic classification. Finally, we analyze the network traffic classification performance of packet-based datasets using the f1 score of the CNN and ResNet deep learning models, and demonstrate their effectiveness.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Packet-based Network Traffic Classification Using Deep Learning\",\"authors\":\"Hyun-kyo Lim, Ju-Bong Kim, Joo-Seong Heo, Kwihoon Kim, Yong-Geun Hong, Youn-Hee Han\",\"doi\":\"10.1109/ICAIIC.2019.8669045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the advent of many network applications has led to a tremendous amount of network traffic. A network operator must provide quality of service for each application on the network. To accomplish this goal, various studies have focused on accurately classifying application network traffic. Network management requires technology to classify network traffic without the intervention of the network operator. In this study, we generate packet-based datasets through our own network traffic pre-processing. We train five deep learning models using the convolutional neural network (CNN) and residual network (ResNet) to perform network traffic classification. Finally, we analyze the network traffic classification performance of packet-based datasets using the f1 score of the CNN and ResNet deep learning models, and demonstrate their effectiveness.\",\"PeriodicalId\":273383,\"journal\":{\"name\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC.2019.8669045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Packet-based Network Traffic Classification Using Deep Learning
Recently, the advent of many network applications has led to a tremendous amount of network traffic. A network operator must provide quality of service for each application on the network. To accomplish this goal, various studies have focused on accurately classifying application network traffic. Network management requires technology to classify network traffic without the intervention of the network operator. In this study, we generate packet-based datasets through our own network traffic pre-processing. We train five deep learning models using the convolutional neural network (CNN) and residual network (ResNet) to perform network traffic classification. Finally, we analyze the network traffic classification performance of packet-based datasets using the f1 score of the CNN and ResNet deep learning models, and demonstrate their effectiveness.