使用神经网络和k近邻进行天气预报和分类

Rh Mantri, Kulkarni Rakshit Raghavendra, Harshita Puri, Jhanavi Chaudhary, Kishore Bingi
{"title":"使用神经网络和k近邻进行天气预报和分类","authors":"Rh Mantri, Kulkarni Rakshit Raghavendra, Harshita Puri, Jhanavi Chaudhary, Kishore Bingi","doi":"10.1109/ICSCC51209.2021.9528115","DOIUrl":null,"url":null,"abstract":"This paper focuses on developing a weather prediction model to predict temperature and humidity. Further, a classification model is also extended to predict the weather condition using the expected model’s output. The proposed hybrid model can predict the temperature and humidity and forecast future weather conditions. The prediction and classification models are created using neural networks and k-nearest neighbors, respectively. The prediction model’s results have shown the best ability for both the output variables (temperature and humidity) with R2 values close to one and MSE values close to zero. Further, the classification model’s results also showed better execution in classifying the weather conditions with the highest accuracy values.","PeriodicalId":382982,"journal":{"name":"2021 8th International Conference on Smart Computing and Communications (ICSCC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Weather Prediction and Classification Using Neural Networks and k-Nearest Neighbors\",\"authors\":\"Rh Mantri, Kulkarni Rakshit Raghavendra, Harshita Puri, Jhanavi Chaudhary, Kishore Bingi\",\"doi\":\"10.1109/ICSCC51209.2021.9528115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on developing a weather prediction model to predict temperature and humidity. Further, a classification model is also extended to predict the weather condition using the expected model’s output. The proposed hybrid model can predict the temperature and humidity and forecast future weather conditions. The prediction and classification models are created using neural networks and k-nearest neighbors, respectively. The prediction model’s results have shown the best ability for both the output variables (temperature and humidity) with R2 values close to one and MSE values close to zero. Further, the classification model’s results also showed better execution in classifying the weather conditions with the highest accuracy values.\",\"PeriodicalId\":382982,\"journal\":{\"name\":\"2021 8th International Conference on Smart Computing and Communications (ICSCC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Smart Computing and Communications (ICSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCC51209.2021.9528115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Smart Computing and Communications (ICSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCC51209.2021.9528115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文的重点是建立一个天气预报模型来预测温度和湿度。此外,还扩展了分类模型,以使用预期模型的输出来预测天气状况。该混合模型可以预测温度和湿度,并预测未来的天气状况。预测模型和分类模型分别使用神经网络和k近邻建立。预测模型的结果表明,当R2值接近于1,MSE值接近于0时,输出变量(温度和湿度)的预测能力最好。此外,分类模型的结果在分类精度值最高的天气条件方面也显示出更好的执行力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weather Prediction and Classification Using Neural Networks and k-Nearest Neighbors
This paper focuses on developing a weather prediction model to predict temperature and humidity. Further, a classification model is also extended to predict the weather condition using the expected model’s output. The proposed hybrid model can predict the temperature and humidity and forecast future weather conditions. The prediction and classification models are created using neural networks and k-nearest neighbors, respectively. The prediction model’s results have shown the best ability for both the output variables (temperature and humidity) with R2 values close to one and MSE values close to zero. Further, the classification model’s results also showed better execution in classifying the weather conditions with the highest accuracy values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信