T-S模糊神经网络系统同步的改进综合与分析结果

Wenqiang Ji, Qifu Qu, Junhua Gu, Meng Wang, Yiwei Zhao
{"title":"T-S模糊神经网络系统同步的改进综合与分析结果","authors":"Wenqiang Ji, Qifu Qu, Junhua Gu, Meng Wang, Yiwei Zhao","doi":"10.1109/ICIST52614.2021.9440602","DOIUrl":null,"url":null,"abstract":"This paper studies the synchronization problem for nonlinear neural network systems (NNSs) via T-S fuzzy models. Under a convex optimization framework, an improved asymptotic stability condition is obtained to ensure the synchronization of the fuzzy drive NNS with the response NNS. By introducing several auxiliary matrix multipliers, increased freedom are involved and the conservativeness can be further reduced. Simulation studies are given to show the effectiveness of the proposed method.","PeriodicalId":371599,"journal":{"name":"2021 11th International Conference on Information Science and Technology (ICIST)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Synthesis and Analysis Results on Synchronization of T-S Fuzzy Neural Network Systems\",\"authors\":\"Wenqiang Ji, Qifu Qu, Junhua Gu, Meng Wang, Yiwei Zhao\",\"doi\":\"10.1109/ICIST52614.2021.9440602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the synchronization problem for nonlinear neural network systems (NNSs) via T-S fuzzy models. Under a convex optimization framework, an improved asymptotic stability condition is obtained to ensure the synchronization of the fuzzy drive NNS with the response NNS. By introducing several auxiliary matrix multipliers, increased freedom are involved and the conservativeness can be further reduced. Simulation studies are given to show the effectiveness of the proposed method.\",\"PeriodicalId\":371599,\"journal\":{\"name\":\"2021 11th International Conference on Information Science and Technology (ICIST)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST52614.2021.9440602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST52614.2021.9440602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用T-S模糊模型研究了非线性神经网络系统的同步问题。在一个凸优化框架下,得到了一个改进的渐近稳定性条件,以保证模糊驱动神经网络与响应神经网络的同步。通过引入几个辅助矩阵乘法器,增加了自由度,进一步降低了保守性。仿真研究表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Synthesis and Analysis Results on Synchronization of T-S Fuzzy Neural Network Systems
This paper studies the synchronization problem for nonlinear neural network systems (NNSs) via T-S fuzzy models. Under a convex optimization framework, an improved asymptotic stability condition is obtained to ensure the synchronization of the fuzzy drive NNS with the response NNS. By introducing several auxiliary matrix multipliers, increased freedom are involved and the conservativeness can be further reduced. Simulation studies are given to show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信