基于ICA的自适应区域多模态图像融合

N. Cvejic, J. Lewis, D. Bull, C. N. Canagarajah
{"title":"基于ICA的自适应区域多模态图像融合","authors":"N. Cvejic, J. Lewis, D. Bull, C. N. Canagarajah","doi":"10.1109/ICIF.2006.301600","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel multimodal image fusion algorithm in ICA domain. It uses segmentation to determine the most important regions in the input images and consequently fuses the ICA coefficients from given regions using the Piella fusion metric to maximise the quality of the fused image. The proposed method exhibits significantly higher performance than the basic ICA algorithm and improvement over other state-of-the-art algorithms","PeriodicalId":248061,"journal":{"name":"2006 9th International Conference on Information Fusion","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Adaptive Region-Based Multimodal Image Fusion Using ICA Bases\",\"authors\":\"N. Cvejic, J. Lewis, D. Bull, C. N. Canagarajah\",\"doi\":\"10.1109/ICIF.2006.301600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel multimodal image fusion algorithm in ICA domain. It uses segmentation to determine the most important regions in the input images and consequently fuses the ICA coefficients from given regions using the Piella fusion metric to maximise the quality of the fused image. The proposed method exhibits significantly higher performance than the basic ICA algorithm and improvement over other state-of-the-art algorithms\",\"PeriodicalId\":248061,\"journal\":{\"name\":\"2006 9th International Conference on Information Fusion\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 9th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2006.301600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2006.301600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种新的多模态图像融合算法。它使用分割来确定输入图像中最重要的区域,然后使用Piella融合度量来融合给定区域的ICA系数,以最大限度地提高融合图像的质量。该方法的性能明显高于基本ICA算法,并优于其他先进算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Region-Based Multimodal Image Fusion Using ICA Bases
In this paper, we present a novel multimodal image fusion algorithm in ICA domain. It uses segmentation to determine the most important regions in the input images and consequently fuses the ICA coefficients from given regions using the Piella fusion metric to maximise the quality of the fused image. The proposed method exhibits significantly higher performance than the basic ICA algorithm and improvement over other state-of-the-art algorithms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信