{"title":"利用树莓派设计具有图像处理能力的低视力电子眼镜","authors":"Rachmad Setiawan, Rayhan Akmal Fadlurahman, Nada Fitrieyatul Hikmah","doi":"10.35882/jeeemi.v5i2.294","DOIUrl":null,"url":null,"abstract":"Poor vision is one of the most common eye health issues worldwide. Low vision patients are typically treated with optical devices or by substituting hearing or touch for visual capabilities. Head-mounted displays are currently the most promising form of low-vision assistive technology since they utilize the user's remaining natural visual capabilities. In this work, a prototype head-mounted display-based low-vision tool in the form of electronic glasses was designed utilizing a Raspberry Pi computer. The prototype was created using a Raspberry Pi 4 B coupled with cameras to allow real-time video acquisition. The LCD on the electronic eyewear frame as the camera showed the video recording. The prototype also included software utilizing five image processing modes—magnification, brightness enhancement, adaptive contrast enhancement, edge enhancement, and text detection and recognition- to help persons with limited vision acquire visual information more effectively. OpenCV was used with Python to create the software system. Average framerate measurements of 30–40 FPS for brightness and contrast improvement modes, 20 FPS for zooming and edge enhancement modes, and 1.3 FPS for text identification modes showed that the concept of electronic spectacles was successfully implemented in this research.","PeriodicalId":369032,"journal":{"name":"Journal of Electronics, Electromedical Engineering, and Medical Informatics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Low Vision Electronic Glasses with Image Processing Capabilities Using Raspberry Pi\",\"authors\":\"Rachmad Setiawan, Rayhan Akmal Fadlurahman, Nada Fitrieyatul Hikmah\",\"doi\":\"10.35882/jeeemi.v5i2.294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poor vision is one of the most common eye health issues worldwide. Low vision patients are typically treated with optical devices or by substituting hearing or touch for visual capabilities. Head-mounted displays are currently the most promising form of low-vision assistive technology since they utilize the user's remaining natural visual capabilities. In this work, a prototype head-mounted display-based low-vision tool in the form of electronic glasses was designed utilizing a Raspberry Pi computer. The prototype was created using a Raspberry Pi 4 B coupled with cameras to allow real-time video acquisition. The LCD on the electronic eyewear frame as the camera showed the video recording. The prototype also included software utilizing five image processing modes—magnification, brightness enhancement, adaptive contrast enhancement, edge enhancement, and text detection and recognition- to help persons with limited vision acquire visual information more effectively. OpenCV was used with Python to create the software system. Average framerate measurements of 30–40 FPS for brightness and contrast improvement modes, 20 FPS for zooming and edge enhancement modes, and 1.3 FPS for text identification modes showed that the concept of electronic spectacles was successfully implemented in this research.\",\"PeriodicalId\":369032,\"journal\":{\"name\":\"Journal of Electronics, Electromedical Engineering, and Medical Informatics\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronics, Electromedical Engineering, and Medical Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35882/jeeemi.v5i2.294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronics, Electromedical Engineering, and Medical Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35882/jeeemi.v5i2.294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of Low Vision Electronic Glasses with Image Processing Capabilities Using Raspberry Pi
Poor vision is one of the most common eye health issues worldwide. Low vision patients are typically treated with optical devices or by substituting hearing or touch for visual capabilities. Head-mounted displays are currently the most promising form of low-vision assistive technology since they utilize the user's remaining natural visual capabilities. In this work, a prototype head-mounted display-based low-vision tool in the form of electronic glasses was designed utilizing a Raspberry Pi computer. The prototype was created using a Raspberry Pi 4 B coupled with cameras to allow real-time video acquisition. The LCD on the electronic eyewear frame as the camera showed the video recording. The prototype also included software utilizing five image processing modes—magnification, brightness enhancement, adaptive contrast enhancement, edge enhancement, and text detection and recognition- to help persons with limited vision acquire visual information more effectively. OpenCV was used with Python to create the software system. Average framerate measurements of 30–40 FPS for brightness and contrast improvement modes, 20 FPS for zooming and edge enhancement modes, and 1.3 FPS for text identification modes showed that the concept of electronic spectacles was successfully implemented in this research.