Álysson De Sá Soares., Isabela De Oliveira Bulhões, Victor Guilherme Ferreira Trajano, Vitor Felix Oliveira Da Silva, A. Maciel
{"title":"使用随机森林进行资产估值的基本卫生服务分类","authors":"Álysson De Sá Soares., Isabela De Oliveira Bulhões, Victor Guilherme Ferreira Trajano, Vitor Felix Oliveira Da Silva, A. Maciel","doi":"10.25286/repa.v6i5.2148","DOIUrl":null,"url":null,"abstract":"No processo de revisão tarifária de uma agência reguladora a consistência dos dados é de fundamental importância para uma melhor assertividade. Para esta análise, grande parte dos dados de suma relevância não são informados, o que leva a um processo manual dos analistas responsáveis pela revisão. Visando auxiliar o trabalho, foi realizado um estudo de caso com abordagem qualitativa e quantitativa dos dados visando a extração de informações relevantes a partir de uma base disponibilizada com ativos de esgoto e de abastecimento hídrico, algoritmos de classificação baseado em Aprendizado de Máquina foram implementados e validados. Como resultado, um modelo de Random Forest capaz de classificar o tipo de serviço no qual os ativos estão inseridos foi desenvolvido, atingindo uma acurácia de aproximadamente 80%. Deste modo, o presente trabalho viabiliza predizer parte das informações faltantes nas revisões, o que diminuirá o tempo de análise dos agentes, além de reduzir os possíveis erros humanos no processo como um todo.","PeriodicalId":331078,"journal":{"name":"Revista de Engenharia e Pesquisa Aplicada","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classificação dos Serviços de Saneamento Básico para Valoração de Ativos Utilizando Random Forest\",\"authors\":\"Álysson De Sá Soares., Isabela De Oliveira Bulhões, Victor Guilherme Ferreira Trajano, Vitor Felix Oliveira Da Silva, A. Maciel\",\"doi\":\"10.25286/repa.v6i5.2148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"No processo de revisão tarifária de uma agência reguladora a consistência dos dados é de fundamental importância para uma melhor assertividade. Para esta análise, grande parte dos dados de suma relevância não são informados, o que leva a um processo manual dos analistas responsáveis pela revisão. Visando auxiliar o trabalho, foi realizado um estudo de caso com abordagem qualitativa e quantitativa dos dados visando a extração de informações relevantes a partir de uma base disponibilizada com ativos de esgoto e de abastecimento hídrico, algoritmos de classificação baseado em Aprendizado de Máquina foram implementados e validados. Como resultado, um modelo de Random Forest capaz de classificar o tipo de serviço no qual os ativos estão inseridos foi desenvolvido, atingindo uma acurácia de aproximadamente 80%. Deste modo, o presente trabalho viabiliza predizer parte das informações faltantes nas revisões, o que diminuirá o tempo de análise dos agentes, além de reduzir os possíveis erros humanos no processo como um todo.\",\"PeriodicalId\":331078,\"journal\":{\"name\":\"Revista de Engenharia e Pesquisa Aplicada\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Engenharia e Pesquisa Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25286/repa.v6i5.2148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Engenharia e Pesquisa Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25286/repa.v6i5.2148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classificação dos Serviços de Saneamento Básico para Valoração de Ativos Utilizando Random Forest
No processo de revisão tarifária de uma agência reguladora a consistência dos dados é de fundamental importância para uma melhor assertividade. Para esta análise, grande parte dos dados de suma relevância não são informados, o que leva a um processo manual dos analistas responsáveis pela revisão. Visando auxiliar o trabalho, foi realizado um estudo de caso com abordagem qualitativa e quantitativa dos dados visando a extração de informações relevantes a partir de uma base disponibilizada com ativos de esgoto e de abastecimento hídrico, algoritmos de classificação baseado em Aprendizado de Máquina foram implementados e validados. Como resultado, um modelo de Random Forest capaz de classificar o tipo de serviço no qual os ativos estão inseridos foi desenvolvido, atingindo uma acurácia de aproximadamente 80%. Deste modo, o presente trabalho viabiliza predizer parte das informações faltantes nas revisões, o que diminuirá o tempo de análise dos agentes, além de reduzir os possíveis erros humanos no processo como um todo.