CORE:用于应急响应的关键对象数据集

Ahmed A. Ambarak, J. Steele, H. Zhang
{"title":"CORE:用于应急响应的关键对象数据集","authors":"Ahmed A. Ambarak, J. Steele, H. Zhang","doi":"10.1109/SSRR.2015.7443008","DOIUrl":null,"url":null,"abstract":"Robotic first responders have potential to significantly improve rescue efficiency and safety in search and rescue missions. To operate intelligently, a robot requires the capability to recognize critical objects in a disaster environment, in order to effectively locate victims and/or prevent secondary disasters. In this report, we introduce a novel dataset of Critical Objects for Response to Emergency (CORE) to facilitate future design of object detection systems for search and rescue missions. We also implement an object detection approach, using object proposals, deep features, and classifiers, to recognize objects in the CORE dataset. An average accuracy of 94.6% is achieved.","PeriodicalId":357384,"journal":{"name":"2015 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CORE: A dataset of critical objects for response to emergency\",\"authors\":\"Ahmed A. Ambarak, J. Steele, H. Zhang\",\"doi\":\"10.1109/SSRR.2015.7443008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotic first responders have potential to significantly improve rescue efficiency and safety in search and rescue missions. To operate intelligently, a robot requires the capability to recognize critical objects in a disaster environment, in order to effectively locate victims and/or prevent secondary disasters. In this report, we introduce a novel dataset of Critical Objects for Response to Emergency (CORE) to facilitate future design of object detection systems for search and rescue missions. We also implement an object detection approach, using object proposals, deep features, and classifiers, to recognize objects in the CORE dataset. An average accuracy of 94.6% is achieved.\",\"PeriodicalId\":357384,\"journal\":{\"name\":\"2015 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSRR.2015.7443008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR.2015.7443008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器人急救人员在搜救任务中具有显著提高救援效率和安全性的潜力。为了实现智能操作,机器人需要能够识别灾难环境中的关键物体,以便有效地定位受害者和/或防止二次灾害。在本报告中,我们介绍了一个新的应急响应关键目标数据集(CORE),以促进未来搜索和救援任务目标检测系统的设计。我们还实现了一种对象检测方法,使用对象建议、深度特征和分类器来识别CORE数据集中的对象。平均准确率达到94.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CORE: A dataset of critical objects for response to emergency
Robotic first responders have potential to significantly improve rescue efficiency and safety in search and rescue missions. To operate intelligently, a robot requires the capability to recognize critical objects in a disaster environment, in order to effectively locate victims and/or prevent secondary disasters. In this report, we introduce a novel dataset of Critical Objects for Response to Emergency (CORE) to facilitate future design of object detection systems for search and rescue missions. We also implement an object detection approach, using object proposals, deep features, and classifiers, to recognize objects in the CORE dataset. An average accuracy of 94.6% is achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信