Frobenius形式的确定性计算

A. Storjohann
{"title":"Frobenius形式的确定性计算","authors":"A. Storjohann","doi":"10.1109/SFCS.2001.959911","DOIUrl":null,"url":null,"abstract":"A deterministic algorithm for computing the Frobenius canonical-form of a matrix over a field is described. A similarity transformation-matrix is recovered in the same time. The algorithm is nearly optimal, requiring about the same number of field operations as required for matrix multiplication. Previously-known reductions to matrix multiplication are probabilistic.","PeriodicalId":378126,"journal":{"name":"Proceedings 2001 IEEE International Conference on Cluster Computing","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Deterministic computation of the Frobenius form\",\"authors\":\"A. Storjohann\",\"doi\":\"10.1109/SFCS.2001.959911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A deterministic algorithm for computing the Frobenius canonical-form of a matrix over a field is described. A similarity transformation-matrix is recovered in the same time. The algorithm is nearly optimal, requiring about the same number of field operations as required for matrix multiplication. Previously-known reductions to matrix multiplication are probabilistic.\",\"PeriodicalId\":378126,\"journal\":{\"name\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.2001.959911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.2001.959911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

描述了计算域上矩阵的Frobenius标准形式的一种确定性算法。同时恢复相似变换矩阵。该算法几乎是最优的,所需的字段操作数量与矩阵乘法所需的字段操作数量相同。以前已知的矩阵乘法的简化是概率性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deterministic computation of the Frobenius form
A deterministic algorithm for computing the Frobenius canonical-form of a matrix over a field is described. A similarity transformation-matrix is recovered in the same time. The algorithm is nearly optimal, requiring about the same number of field operations as required for matrix multiplication. Previously-known reductions to matrix multiplication are probabilistic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信