基于Fisher特征分析的图像分类

P. Qin, Jun Chu, Yawei Su
{"title":"基于Fisher特征分析的图像分类","authors":"P. Qin, Jun Chu, Yawei Su","doi":"10.1109/ICSAI48974.2019.9010355","DOIUrl":null,"url":null,"abstract":"Currently, CNN-based scene classification algorithms have become mainstream. By using the features of convolutional neural networks, we propose an image classification method with Fisher feature analysis. Rich high-dimensional image descriptors can be learned through convolutional neural networks, and it is inefficient to calculate the similarity of these high feature descriptors. In order to reduce the time of feature matching and improve the accuracy of similarity descriptor matching, the algorithm adds a hidden layer between the fully-connected layer and the output layer which fine-tuning network to learn the features of low images. For solve the similarity of image feature descriptors, we use Fisher discriminant to classify images which enhance the independence between sample features. Experiments based on the Scene-15 and cifar-10 datasets show that the proposed method improves the efficiency of network feature matching and classification accuracy.","PeriodicalId":270809,"journal":{"name":"2019 6th International Conference on Systems and Informatics (ICSAI)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Classification with Fisher Feature Analysis\",\"authors\":\"P. Qin, Jun Chu, Yawei Su\",\"doi\":\"10.1109/ICSAI48974.2019.9010355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, CNN-based scene classification algorithms have become mainstream. By using the features of convolutional neural networks, we propose an image classification method with Fisher feature analysis. Rich high-dimensional image descriptors can be learned through convolutional neural networks, and it is inefficient to calculate the similarity of these high feature descriptors. In order to reduce the time of feature matching and improve the accuracy of similarity descriptor matching, the algorithm adds a hidden layer between the fully-connected layer and the output layer which fine-tuning network to learn the features of low images. For solve the similarity of image feature descriptors, we use Fisher discriminant to classify images which enhance the independence between sample features. Experiments based on the Scene-15 and cifar-10 datasets show that the proposed method improves the efficiency of network feature matching and classification accuracy.\",\"PeriodicalId\":270809,\"journal\":{\"name\":\"2019 6th International Conference on Systems and Informatics (ICSAI)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th International Conference on Systems and Informatics (ICSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI48974.2019.9010355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI48974.2019.9010355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,基于cnn的场景分类算法已经成为主流。利用卷积神经网络的特点,提出了一种基于Fisher特征分析的图像分类方法。通过卷积神经网络可以学习到丰富的高维图像描述符,而计算这些高维特征描述符的相似度是低效的。为了减少特征匹配的时间,提高相似描述符匹配的精度,该算法在全连接层和微调网络的输出层之间增加了一个隐藏层来学习低图像的特征。为了解决图像特征描述符的相似性问题,我们使用Fisher判别法对图像进行分类,增强了样本特征之间的独立性。基于Scene-15和cifar-10数据集的实验表明,该方法提高了网络特征匹配效率和分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Classification with Fisher Feature Analysis
Currently, CNN-based scene classification algorithms have become mainstream. By using the features of convolutional neural networks, we propose an image classification method with Fisher feature analysis. Rich high-dimensional image descriptors can be learned through convolutional neural networks, and it is inefficient to calculate the similarity of these high feature descriptors. In order to reduce the time of feature matching and improve the accuracy of similarity descriptor matching, the algorithm adds a hidden layer between the fully-connected layer and the output layer which fine-tuning network to learn the features of low images. For solve the similarity of image feature descriptors, we use Fisher discriminant to classify images which enhance the independence between sample features. Experiments based on the Scene-15 and cifar-10 datasets show that the proposed method improves the efficiency of network feature matching and classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信