时间序列扭曲模式的自动检测:卡特彼勒算法

Maximilian Leodolter, Norbert Brändle, C. Plant
{"title":"时间序列扭曲模式的自动检测:卡特彼勒算法","authors":"Maximilian Leodolter, Norbert Brändle, C. Plant","doi":"10.1109/ICBK.2018.00063","DOIUrl":null,"url":null,"abstract":"Detection of similar representations of a given query time series within longer time series is an important task in many applications such as finance, activity research, text mining and many more. Identifying time warped instances of different lengths but similar shape within longer time series is still a difficult problem. We propose the novel Caterpillar algorithm which fuses the advantages of Dynamic Time Warping (DTW) and the Minimum Description Length (MDL) principle to move a sliding window in a crawling-like way into the future and past of a time series. To demonstrate the wide field of application and validity, we compare our method against stateof-the-art methods on accelerometer time series and synthetic random walks. Our experiments demonstrate that Caterpillar outperforms the comparison methods in detecting accelerometer signals of metro stops.","PeriodicalId":144958,"journal":{"name":"2018 IEEE International Conference on Big Knowledge (ICBK)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Detection of Warped Patterns in Time Series: The Caterpillar Algorithm\",\"authors\":\"Maximilian Leodolter, Norbert Brändle, C. Plant\",\"doi\":\"10.1109/ICBK.2018.00063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of similar representations of a given query time series within longer time series is an important task in many applications such as finance, activity research, text mining and many more. Identifying time warped instances of different lengths but similar shape within longer time series is still a difficult problem. We propose the novel Caterpillar algorithm which fuses the advantages of Dynamic Time Warping (DTW) and the Minimum Description Length (MDL) principle to move a sliding window in a crawling-like way into the future and past of a time series. To demonstrate the wide field of application and validity, we compare our method against stateof-the-art methods on accelerometer time series and synthetic random walks. Our experiments demonstrate that Caterpillar outperforms the comparison methods in detecting accelerometer signals of metro stops.\",\"PeriodicalId\":144958,\"journal\":{\"name\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK.2018.00063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2018.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在较长的时间序列中检测给定查询时间序列的相似表示是许多应用中的重要任务,例如金融、活动研究、文本挖掘等。在较长的时间序列中识别长度不同但形状相似的时间扭曲实例仍然是一个难题。我们提出了一种新的卡特彼勒算法,它融合了动态时间扭曲(DTW)和最小描述长度(MDL)原理的优点,以类似爬行的方式将滑动窗口移动到时间序列的未来和过去。为了证明广泛的应用领域和有效性,我们将我们的方法与加速度计时间序列和合成随机漫步的最先进方法进行了比较。我们的实验表明,卡特彼勒在检测地铁车站加速度计信号方面优于比较方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Detection of Warped Patterns in Time Series: The Caterpillar Algorithm
Detection of similar representations of a given query time series within longer time series is an important task in many applications such as finance, activity research, text mining and many more. Identifying time warped instances of different lengths but similar shape within longer time series is still a difficult problem. We propose the novel Caterpillar algorithm which fuses the advantages of Dynamic Time Warping (DTW) and the Minimum Description Length (MDL) principle to move a sliding window in a crawling-like way into the future and past of a time series. To demonstrate the wide field of application and validity, we compare our method against stateof-the-art methods on accelerometer time series and synthetic random walks. Our experiments demonstrate that Caterpillar outperforms the comparison methods in detecting accelerometer signals of metro stops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信