适用于半监督学习算法的简单循环选择和增量强化选择方法

Thanh-Binh Le, Sang-Woon Kim
{"title":"适用于半监督学习算法的简单循环选择和增量强化选择方法","authors":"Thanh-Binh Le, Sang-Woon Kim","doi":"10.1109/ELINFOCOM.2014.6914422","DOIUrl":null,"url":null,"abstract":"This paper presents an empirical study on selecting a small amount useful unlabeled data with which the classification accuracy of semi-supervised learning (SSL) algorithms can be improved. In particular, two selection strategies, named simply recycled selection and incrementally reinforced selection, are considered and empirically compared. The experimental results, obtained with well-known benchmark data sets, demonstrate that the latter works better than the former does in terms of classification accuracy.","PeriodicalId":360207,"journal":{"name":"2014 International Conference on Electronics, Information and Communications (ICEIC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simply recycled selection and incrementally reinforced selection methods applicable for semi-supervised learning algorithms\",\"authors\":\"Thanh-Binh Le, Sang-Woon Kim\",\"doi\":\"10.1109/ELINFOCOM.2014.6914422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an empirical study on selecting a small amount useful unlabeled data with which the classification accuracy of semi-supervised learning (SSL) algorithms can be improved. In particular, two selection strategies, named simply recycled selection and incrementally reinforced selection, are considered and empirically compared. The experimental results, obtained with well-known benchmark data sets, demonstrate that the latter works better than the former does in terms of classification accuracy.\",\"PeriodicalId\":360207,\"journal\":{\"name\":\"2014 International Conference on Electronics, Information and Communications (ICEIC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Electronics, Information and Communications (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELINFOCOM.2014.6914422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electronics, Information and Communications (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELINFOCOM.2014.6914422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种选择少量有用的未标记数据来提高半监督学习(SSL)算法分类精度的实证研究。特别考虑了简单循环选择和增量强化选择两种选择策略,并进行了实证比较。使用知名的基准数据集进行的实验结果表明,后者在分类精度方面优于前者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simply recycled selection and incrementally reinforced selection methods applicable for semi-supervised learning algorithms
This paper presents an empirical study on selecting a small amount useful unlabeled data with which the classification accuracy of semi-supervised learning (SSL) algorithms can be improved. In particular, two selection strategies, named simply recycled selection and incrementally reinforced selection, are considered and empirically compared. The experimental results, obtained with well-known benchmark data sets, demonstrate that the latter works better than the former does in terms of classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信