{"title":"基于消息传递的k-终端可靠性算法","authors":"Minh Lê, J. Weidendorfer","doi":"10.1109/EDCC.2018.00022","DOIUrl":null,"url":null,"abstract":"As the exact computation of the k-terminal reliability is an NP-Complete problem, runtime and memory requirements grow exponentially with the input size. Shared memory parallelization algorithms were developed for reducing runtime. However, even a relatively high amount of memory can already be exhausted within a short period of time. A message-passing based algorithm is proposed in order to circumvent the memory limitation of shared memory implementations. It is the first message-passing based algorithm for the k-terminal problem. The new algorithm is designed for the currently most efficient BDD-based method. New data structures such as the distributed BDD and a distributed hash table lead to good speedup results and load-balanced task distributions. Now the size of computable inputs are limited to the memory carried along by the available cores. The two-terminal reliability of a 17 node complete network was computed on 1024 cores of the SuperMUC within 7 minutes, using 1.28 Terabyte of memory and resulting in more than 6 billion BDD nodes.","PeriodicalId":129399,"journal":{"name":"2018 14th European Dependable Computing Conference (EDCC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Message-Passing Based Algorithm for k-Terminal Reliability\",\"authors\":\"Minh Lê, J. Weidendorfer\",\"doi\":\"10.1109/EDCC.2018.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the exact computation of the k-terminal reliability is an NP-Complete problem, runtime and memory requirements grow exponentially with the input size. Shared memory parallelization algorithms were developed for reducing runtime. However, even a relatively high amount of memory can already be exhausted within a short period of time. A message-passing based algorithm is proposed in order to circumvent the memory limitation of shared memory implementations. It is the first message-passing based algorithm for the k-terminal problem. The new algorithm is designed for the currently most efficient BDD-based method. New data structures such as the distributed BDD and a distributed hash table lead to good speedup results and load-balanced task distributions. Now the size of computable inputs are limited to the memory carried along by the available cores. The two-terminal reliability of a 17 node complete network was computed on 1024 cores of the SuperMUC within 7 minutes, using 1.28 Terabyte of memory and resulting in more than 6 billion BDD nodes.\",\"PeriodicalId\":129399,\"journal\":{\"name\":\"2018 14th European Dependable Computing Conference (EDCC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th European Dependable Computing Conference (EDCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDCC.2018.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th European Dependable Computing Conference (EDCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDCC.2018.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Message-Passing Based Algorithm for k-Terminal Reliability
As the exact computation of the k-terminal reliability is an NP-Complete problem, runtime and memory requirements grow exponentially with the input size. Shared memory parallelization algorithms were developed for reducing runtime. However, even a relatively high amount of memory can already be exhausted within a short period of time. A message-passing based algorithm is proposed in order to circumvent the memory limitation of shared memory implementations. It is the first message-passing based algorithm for the k-terminal problem. The new algorithm is designed for the currently most efficient BDD-based method. New data structures such as the distributed BDD and a distributed hash table lead to good speedup results and load-balanced task distributions. Now the size of computable inputs are limited to the memory carried along by the available cores. The two-terminal reliability of a 17 node complete network was computed on 1024 cores of the SuperMUC within 7 minutes, using 1.28 Terabyte of memory and resulting in more than 6 billion BDD nodes.