计算机视觉与深度学习在乳腺癌辅助诊断中的应用

Yu Gu, Yang Jiayao
{"title":"计算机视觉与深度学习在乳腺癌辅助诊断中的应用","authors":"Yu Gu, Yang Jiayao","doi":"10.1145/3310986.3311010","DOIUrl":null,"url":null,"abstract":"In the general process of breast cancer diagnosis, doctors mainly analyze and judge B-mode ultrasound images through vision, which depends heavily on doctors' operational experience and technical level. Artificial intelligence methods represented by machine learning algorithms have made rapid progress in recent years, especially natural image classification, target detection, semantics segmentation based on computer vision technology have been relatively mature, and have been widely used successfully in various fields. So as to improve the automation ability and reduce human errors, etc. By using artificial intelligence technology such as computer vision and in-depth learning, an automated method is established to diagnose breast cancer B-mode ultrasound images. This method can quickly strengthen the correct diagnostic rate of front-line medical staff and reduce the difference of operation level between urban and rural doctors. It has obvious medical needs and wide social significance.","PeriodicalId":252781,"journal":{"name":"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Application of Computer Vision and Deep Learning in Breast Cancer Assisted Diagnosis\",\"authors\":\"Yu Gu, Yang Jiayao\",\"doi\":\"10.1145/3310986.3311010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the general process of breast cancer diagnosis, doctors mainly analyze and judge B-mode ultrasound images through vision, which depends heavily on doctors' operational experience and technical level. Artificial intelligence methods represented by machine learning algorithms have made rapid progress in recent years, especially natural image classification, target detection, semantics segmentation based on computer vision technology have been relatively mature, and have been widely used successfully in various fields. So as to improve the automation ability and reduce human errors, etc. By using artificial intelligence technology such as computer vision and in-depth learning, an automated method is established to diagnose breast cancer B-mode ultrasound images. This method can quickly strengthen the correct diagnostic rate of front-line medical staff and reduce the difference of operation level between urban and rural doctors. It has obvious medical needs and wide social significance.\",\"PeriodicalId\":252781,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310986.3311010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310986.3311010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在一般的乳腺癌诊断过程中,医生主要通过视觉对b超图像进行分析和判断,这在很大程度上取决于医生的操作经验和技术水平。以机器学习算法为代表的人工智能方法近年来发展迅速,特别是基于计算机视觉的自然图像分类、目标检测、语义分割等技术已经比较成熟,并在各个领域得到了成功的广泛应用。从而提高自动化能力,减少人为失误等。利用计算机视觉、深度学习等人工智能技术,建立了乳腺癌b超图像诊断的自动化方法。该方法可快速提高一线医护人员的诊断率,减少城乡医生的操作水平差异。具有明显的医学需求和广泛的社会意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Computer Vision and Deep Learning in Breast Cancer Assisted Diagnosis
In the general process of breast cancer diagnosis, doctors mainly analyze and judge B-mode ultrasound images through vision, which depends heavily on doctors' operational experience and technical level. Artificial intelligence methods represented by machine learning algorithms have made rapid progress in recent years, especially natural image classification, target detection, semantics segmentation based on computer vision technology have been relatively mature, and have been widely used successfully in various fields. So as to improve the automation ability and reduce human errors, etc. By using artificial intelligence technology such as computer vision and in-depth learning, an automated method is established to diagnose breast cancer B-mode ultrasound images. This method can quickly strengthen the correct diagnostic rate of front-line medical staff and reduce the difference of operation level between urban and rural doctors. It has obvious medical needs and wide social significance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信