Q(4)的最小块集的大小Q),对于Q = 5,7

J. Beule, A. Hoogewijs, L. Storme
{"title":"Q(4)的最小块集的大小Q),对于Q = 5,7","authors":"J. Beule, A. Hoogewijs, L. Storme","doi":"10.1145/1040034.1040037","DOIUrl":null,"url":null,"abstract":"Let Q(2n + 2; <i>q</i>) denote the non-singular parabolic quadric in the projective geometry PG(2<i>n</i> + 2; <i>q</i>). We describe the implementation in GAP of an algorithm to study the problem of the minimal number of points of a minimal blocking set, different from an ovoid, of Q(4; <i>q</i>), for <i>q</i> = 5; 7.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On the size of minimal blocking sets of Q(4; q), for q = 5,7\",\"authors\":\"J. Beule, A. Hoogewijs, L. Storme\",\"doi\":\"10.1145/1040034.1040037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Q(2n + 2; <i>q</i>) denote the non-singular parabolic quadric in the projective geometry PG(2<i>n</i> + 2; <i>q</i>). We describe the implementation in GAP of an algorithm to study the problem of the minimal number of points of a minimal blocking set, different from an ovoid, of Q(4; <i>q</i>), for <i>q</i> = 5; 7.\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1040034.1040037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1040034.1040037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

设Q(2n + 2;q)表示射影几何PG(2n + 2)中的非奇异抛物二次曲面;q).我们描述了一种算法在GAP中的实现,该算法用于研究不同于卵形的最小块集q (4;Q),对于Q = 5;7.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the size of minimal blocking sets of Q(4; q), for q = 5,7
Let Q(2n + 2; q) denote the non-singular parabolic quadric in the projective geometry PG(2n + 2; q). We describe the implementation in GAP of an algorithm to study the problem of the minimal number of points of a minimal blocking set, different from an ovoid, of Q(4; q), for q = 5; 7.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信