{"title":"Q(4)的最小块集的大小Q),对于Q = 5,7","authors":"J. Beule, A. Hoogewijs, L. Storme","doi":"10.1145/1040034.1040037","DOIUrl":null,"url":null,"abstract":"Let Q(2n + 2; <i>q</i>) denote the non-singular parabolic quadric in the projective geometry PG(2<i>n</i> + 2; <i>q</i>). We describe the implementation in GAP of an algorithm to study the problem of the minimal number of points of a minimal blocking set, different from an ovoid, of Q(4; <i>q</i>), for <i>q</i> = 5; 7.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On the size of minimal blocking sets of Q(4; q), for q = 5,7\",\"authors\":\"J. Beule, A. Hoogewijs, L. Storme\",\"doi\":\"10.1145/1040034.1040037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Q(2n + 2; <i>q</i>) denote the non-singular parabolic quadric in the projective geometry PG(2<i>n</i> + 2; <i>q</i>). We describe the implementation in GAP of an algorithm to study the problem of the minimal number of points of a minimal blocking set, different from an ovoid, of Q(4; <i>q</i>), for <i>q</i> = 5; 7.\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1040034.1040037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1040034.1040037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the size of minimal blocking sets of Q(4; q), for q = 5,7
Let Q(2n + 2; q) denote the non-singular parabolic quadric in the projective geometry PG(2n + 2; q). We describe the implementation in GAP of an algorithm to study the problem of the minimal number of points of a minimal blocking set, different from an ovoid, of Q(4; q), for q = 5; 7.