基于变压器的腿式机器人快速触觉地形分类

Michał Bednarek, Mikolaj Lysakowski, J. Bednarek, Michał R. Nowicki, K. Walas
{"title":"基于变压器的腿式机器人快速触觉地形分类","authors":"Michał Bednarek, Mikolaj Lysakowski, J. Bednarek, Michał R. Nowicki, K. Walas","doi":"10.1109/ecmr50962.2021.9568808","DOIUrl":null,"url":null,"abstract":"The haptic terrain classification is an essential component of a mobile walking robot control system, ensuring proper gait adaptation to the changing environmental conditions. In this work, we further tackle this problem with force and torque measurements from feet while focusing on real-life applicability defined as low computational demand and rapid inference time. To meet these requirements, we propose two classical machine learning algorithms (DTW-KNN and ROCKET) and two deep-learning solutions – a typical feed-forward solution based on temporal convolution network (TCN) and the currently prevailing transformer architecture. The experiments conducted on the publicly available haptic classification dataset revealed that we could reach classification results marginally lower than state of the art with networks containing up to 50 times fewer parameters within an improved inference time of several milliseconds on a CPU.","PeriodicalId":200521,"journal":{"name":"2021 European Conference on Mobile Robots (ECMR)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fast Haptic Terrain Classification for Legged Robots Using Transformer\",\"authors\":\"Michał Bednarek, Mikolaj Lysakowski, J. Bednarek, Michał R. Nowicki, K. Walas\",\"doi\":\"10.1109/ecmr50962.2021.9568808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The haptic terrain classification is an essential component of a mobile walking robot control system, ensuring proper gait adaptation to the changing environmental conditions. In this work, we further tackle this problem with force and torque measurements from feet while focusing on real-life applicability defined as low computational demand and rapid inference time. To meet these requirements, we propose two classical machine learning algorithms (DTW-KNN and ROCKET) and two deep-learning solutions – a typical feed-forward solution based on temporal convolution network (TCN) and the currently prevailing transformer architecture. The experiments conducted on the publicly available haptic classification dataset revealed that we could reach classification results marginally lower than state of the art with networks containing up to 50 times fewer parameters within an improved inference time of several milliseconds on a CPU.\",\"PeriodicalId\":200521,\"journal\":{\"name\":\"2021 European Conference on Mobile Robots (ECMR)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ecmr50962.2021.9568808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecmr50962.2021.9568808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

触觉地形分类是移动步行机器人控制系统的重要组成部分,是保证步态适应环境变化的重要组成部分。在这项工作中,我们进一步通过脚的力和扭矩测量来解决这个问题,同时关注现实生活中的适用性,定义为低计算需求和快速推理时间。为了满足这些要求,我们提出了两种经典的机器学习算法(DTW-KNN和ROCKET)和两种深度学习解决方案-一种基于时间卷积网络(TCN)的典型前馈解决方案和目前流行的变压器架构。在公开可用的触觉分类数据集上进行的实验表明,在CPU上改进的几毫秒推理时间内,我们可以在包含多达50倍的参数的网络中获得略低于最先进状态的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Haptic Terrain Classification for Legged Robots Using Transformer
The haptic terrain classification is an essential component of a mobile walking robot control system, ensuring proper gait adaptation to the changing environmental conditions. In this work, we further tackle this problem with force and torque measurements from feet while focusing on real-life applicability defined as low computational demand and rapid inference time. To meet these requirements, we propose two classical machine learning algorithms (DTW-KNN and ROCKET) and two deep-learning solutions – a typical feed-forward solution based on temporal convolution network (TCN) and the currently prevailing transformer architecture. The experiments conducted on the publicly available haptic classification dataset revealed that we could reach classification results marginally lower than state of the art with networks containing up to 50 times fewer parameters within an improved inference time of several milliseconds on a CPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信