道路语境分类器与自动驾驶汽车路径映射

Gabriel J. Garcia-Ramirez, Omar Y. Rios-Trejo, Luis A. Curiel-Ramirez, Luis A. Arce-Saenz, J. Izquierdo-Reyes, Rogelio Bustamante-Bello
{"title":"道路语境分类器与自动驾驶汽车路径映射","authors":"Gabriel J. Garcia-Ramirez, Omar Y. Rios-Trejo, Luis A. Curiel-Ramirez, Luis A. Arce-Saenz, J. Izquierdo-Reyes, Rogelio Bustamante-Bello","doi":"10.1109/ISEM55847.2022.9976522","DOIUrl":null,"url":null,"abstract":"Investment in autonomous vehicles has been increasing in recent years, where only developed countries have the necessary infrastructure to integrate autonomous vehicles effectively into their roads. For countries with a lower quality of infrastructure, such as Latin American countries, it becomes a major challenge in terms of technology, algorithms, and investment. The present work implements a context classifier and route mapping system through a convolutional neural network trained with images of different road contexts in Mexico. The system localizes and maps the route using GNSS (Global Navigation Satellite System) and an interactive web user interface, allowing the streets' interactive analysis. The system enables the vehicles to obtain the type of road context expected in the routes it drives. Thus, it provides support and security in integrating autonomous driving functionalities in routes where the road context and the infrastructure allow them.","PeriodicalId":310452,"journal":{"name":"2022 International Symposium on Electromobility (ISEM)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Road context classifier and route mapping for Autonomous Vehicles\",\"authors\":\"Gabriel J. Garcia-Ramirez, Omar Y. Rios-Trejo, Luis A. Curiel-Ramirez, Luis A. Arce-Saenz, J. Izquierdo-Reyes, Rogelio Bustamante-Bello\",\"doi\":\"10.1109/ISEM55847.2022.9976522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investment in autonomous vehicles has been increasing in recent years, where only developed countries have the necessary infrastructure to integrate autonomous vehicles effectively into their roads. For countries with a lower quality of infrastructure, such as Latin American countries, it becomes a major challenge in terms of technology, algorithms, and investment. The present work implements a context classifier and route mapping system through a convolutional neural network trained with images of different road contexts in Mexico. The system localizes and maps the route using GNSS (Global Navigation Satellite System) and an interactive web user interface, allowing the streets' interactive analysis. The system enables the vehicles to obtain the type of road context expected in the routes it drives. Thus, it provides support and security in integrating autonomous driving functionalities in routes where the road context and the infrastructure allow them.\",\"PeriodicalId\":310452,\"journal\":{\"name\":\"2022 International Symposium on Electromobility (ISEM)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Electromobility (ISEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEM55847.2022.9976522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Electromobility (ISEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEM55847.2022.9976522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,对自动驾驶汽车的投资一直在增加,只有发达国家拥有必要的基础设施,才能将自动驾驶汽车有效地融入其道路。对于基础设施质量较低的国家,如拉丁美洲国家,这成为技术、算法和投资方面的重大挑战。目前的工作通过卷积神经网络实现了一个上下文分类器和路径映射系统,该网络使用墨西哥不同道路背景的图像进行训练。该系统使用GNSS(全球导航卫星系统)和交互式网络用户界面对路线进行定位和绘制,允许对街道进行交互式分析。该系统使车辆能够获得其行驶路线中预期的道路环境类型。因此,在道路环境和基础设施允许的情况下,它为集成自动驾驶功能提供了支持和安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Road context classifier and route mapping for Autonomous Vehicles
Investment in autonomous vehicles has been increasing in recent years, where only developed countries have the necessary infrastructure to integrate autonomous vehicles effectively into their roads. For countries with a lower quality of infrastructure, such as Latin American countries, it becomes a major challenge in terms of technology, algorithms, and investment. The present work implements a context classifier and route mapping system through a convolutional neural network trained with images of different road contexts in Mexico. The system localizes and maps the route using GNSS (Global Navigation Satellite System) and an interactive web user interface, allowing the streets' interactive analysis. The system enables the vehicles to obtain the type of road context expected in the routes it drives. Thus, it provides support and security in integrating autonomous driving functionalities in routes where the road context and the infrastructure allow them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信