{"title":"主动学习在表述查询概念中的可扩展性研究","authors":"Wei-Cheng Lai, Kingshy Goh, E. Chang","doi":"10.1145/1039470.1039477","DOIUrl":null,"url":null,"abstract":"Query-by-example and query-by-keyword both suffer from the problem of \"aliasing,\" meaning that example-images and keywords potentially have variable interpretations or multiple semantics. For discerning which semantic is appropriate for a given query, we have established that combining active learning with kernel methods is a very effective approach. In this work, we first examine active-learning strategies, and then focus on addressing the challenges of two scalability issues: scalability in dataset size and in concept complexity. We present remedies, explain limitations, and discuss future directions that research might take.","PeriodicalId":346313,"journal":{"name":"Computer Vision meets Databases","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On scalability of active learning for formulating query concepts\",\"authors\":\"Wei-Cheng Lai, Kingshy Goh, E. Chang\",\"doi\":\"10.1145/1039470.1039477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Query-by-example and query-by-keyword both suffer from the problem of \\\"aliasing,\\\" meaning that example-images and keywords potentially have variable interpretations or multiple semantics. For discerning which semantic is appropriate for a given query, we have established that combining active learning with kernel methods is a very effective approach. In this work, we first examine active-learning strategies, and then focus on addressing the challenges of two scalability issues: scalability in dataset size and in concept complexity. We present remedies, explain limitations, and discuss future directions that research might take.\",\"PeriodicalId\":346313,\"journal\":{\"name\":\"Computer Vision meets Databases\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision meets Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1039470.1039477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision meets Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1039470.1039477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On scalability of active learning for formulating query concepts
Query-by-example and query-by-keyword both suffer from the problem of "aliasing," meaning that example-images and keywords potentially have variable interpretations or multiple semantics. For discerning which semantic is appropriate for a given query, we have established that combining active learning with kernel methods is a very effective approach. In this work, we first examine active-learning strategies, and then focus on addressing the challenges of two scalability issues: scalability in dataset size and in concept complexity. We present remedies, explain limitations, and discuss future directions that research might take.