{"title":"让我们适应网络的变化:在SDN中通过速率适应实现节能","authors":"Samy Zemmouri, Shahin Vakilinia, M. Cheriet","doi":"10.1109/CNSM.2016.7818431","DOIUrl":null,"url":null,"abstract":"The exponential growth of network users and their communication demands have led to a tangible increment of energy consumption in network infrastructures. A new networking paradigm called Software-Defined Networking (SDN) recently emerged which simplifies network management by offering programmability of network devices. SDN assists to lower link data rates via rate-adaptation technique which reduces power consumption of the network. The main idea behind this paper is to find a distribution of traffic flows over pre-calculated paths which allow adapting the transmission rate of maximum links into lower states. We first formulate the problem as a Mixed Integer Linear Program (MILP) problem. We then present four different computationally efficient algorithms namely greedy first fit, greedy best fit, greedy worst fit and a meta-heuristic genetic algorithm to solve the problem for a realistic network topology. Simulation results show that the genetic algorithm consistently outperforms the three greedy algorithms.","PeriodicalId":334604,"journal":{"name":"2016 12th International Conference on Network and Service Management (CNSM)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Let's adapt to network change: Towards energy saving with rate adaptation in SDN\",\"authors\":\"Samy Zemmouri, Shahin Vakilinia, M. Cheriet\",\"doi\":\"10.1109/CNSM.2016.7818431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exponential growth of network users and their communication demands have led to a tangible increment of energy consumption in network infrastructures. A new networking paradigm called Software-Defined Networking (SDN) recently emerged which simplifies network management by offering programmability of network devices. SDN assists to lower link data rates via rate-adaptation technique which reduces power consumption of the network. The main idea behind this paper is to find a distribution of traffic flows over pre-calculated paths which allow adapting the transmission rate of maximum links into lower states. We first formulate the problem as a Mixed Integer Linear Program (MILP) problem. We then present four different computationally efficient algorithms namely greedy first fit, greedy best fit, greedy worst fit and a meta-heuristic genetic algorithm to solve the problem for a realistic network topology. Simulation results show that the genetic algorithm consistently outperforms the three greedy algorithms.\",\"PeriodicalId\":334604,\"journal\":{\"name\":\"2016 12th International Conference on Network and Service Management (CNSM)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Network and Service Management (CNSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNSM.2016.7818431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNSM.2016.7818431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let's adapt to network change: Towards energy saving with rate adaptation in SDN
The exponential growth of network users and their communication demands have led to a tangible increment of energy consumption in network infrastructures. A new networking paradigm called Software-Defined Networking (SDN) recently emerged which simplifies network management by offering programmability of network devices. SDN assists to lower link data rates via rate-adaptation technique which reduces power consumption of the network. The main idea behind this paper is to find a distribution of traffic flows over pre-calculated paths which allow adapting the transmission rate of maximum links into lower states. We first formulate the problem as a Mixed Integer Linear Program (MILP) problem. We then present four different computationally efficient algorithms namely greedy first fit, greedy best fit, greedy worst fit and a meta-heuristic genetic algorithm to solve the problem for a realistic network topology. Simulation results show that the genetic algorithm consistently outperforms the three greedy algorithms.