基于切比雪夫神经网络的离散非线性系统状态反馈和输出反馈跟踪控制

Animesh Shrivastava, S. Purwar
{"title":"基于切比雪夫神经网络的离散非线性系统状态反馈和输出反馈跟踪控制","authors":"Animesh Shrivastava, S. Purwar","doi":"10.1109/ICPCES.2010.5698626","DOIUrl":null,"url":null,"abstract":"This paper deals with both state feedback and output feedback tracking control of discrete-time nonlinear system using CNN. Firstly, state feedback control is presented via backstepping, applied to a strict feedback form. In this CNN is used to approximate unknown functions to design control law by the backstepping technique and solves the non-causal problem in discrete-time system. After this output feedback control is presented by converting strict feedback form into cascade form (Brunovsky form). This paper also presents the respective stability analysis, on the basis of the Lyapunov approach, for the whole controlled system. A single layer functional link CNN is used where the need of hidden layer is eliminated by expanding the input pattern by Chebyshev polynomials and approximation of complex nonlinear systems becomes easier. A simulation example is given to show the effectiveness of control schemes.","PeriodicalId":439893,"journal":{"name":"2010 International Conference on Power, Control and Embedded Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"State feedback and output feedback tracking control of discrete-time nonlinear system using Chebyshev neural networks\",\"authors\":\"Animesh Shrivastava, S. Purwar\",\"doi\":\"10.1109/ICPCES.2010.5698626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with both state feedback and output feedback tracking control of discrete-time nonlinear system using CNN. Firstly, state feedback control is presented via backstepping, applied to a strict feedback form. In this CNN is used to approximate unknown functions to design control law by the backstepping technique and solves the non-causal problem in discrete-time system. After this output feedback control is presented by converting strict feedback form into cascade form (Brunovsky form). This paper also presents the respective stability analysis, on the basis of the Lyapunov approach, for the whole controlled system. A single layer functional link CNN is used where the need of hidden layer is eliminated by expanding the input pattern by Chebyshev polynomials and approximation of complex nonlinear systems becomes easier. A simulation example is given to show the effectiveness of control schemes.\",\"PeriodicalId\":439893,\"journal\":{\"name\":\"2010 International Conference on Power, Control and Embedded Systems\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Power, Control and Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPCES.2010.5698626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Power, Control and Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPCES.2010.5698626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了离散非线性系统的状态反馈和输出反馈跟踪控制。首先,将状态反馈控制应用于一个严格的反馈形式中。该方法利用CNN逼近未知函数,通过反演技术设计控制律,解决了离散系统中的非因果问题。在此基础上,通过将严格反馈形式转化为级联形式(布鲁诺夫斯基形式)来实现输出反馈控制。本文还在李雅普诺夫方法的基础上,对整个被控系统进行了稳定性分析。采用单层功能链接CNN,通过切比雪夫多项式扩展输入模式,消除了隐藏层的需要,使复杂非线性系统的逼近变得更加容易。仿真结果表明了控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State feedback and output feedback tracking control of discrete-time nonlinear system using Chebyshev neural networks
This paper deals with both state feedback and output feedback tracking control of discrete-time nonlinear system using CNN. Firstly, state feedback control is presented via backstepping, applied to a strict feedback form. In this CNN is used to approximate unknown functions to design control law by the backstepping technique and solves the non-causal problem in discrete-time system. After this output feedback control is presented by converting strict feedback form into cascade form (Brunovsky form). This paper also presents the respective stability analysis, on the basis of the Lyapunov approach, for the whole controlled system. A single layer functional link CNN is used where the need of hidden layer is eliminated by expanding the input pattern by Chebyshev polynomials and approximation of complex nonlinear systems becomes easier. A simulation example is given to show the effectiveness of control schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信