{"title":"基于情感分类的Facebook用户关系分析","authors":"D. Terrana, A. Augello, G. Pilato","doi":"10.1109/ICSC.2014.59","DOIUrl":null,"url":null,"abstract":"It is presented an approach aimed at analyzing the homepage of a Facebook user or group in order to automatically detect who has discussed what and how it has been discussed. All public posts shared by an user are retrieved by an ad hoc built crawler. Information such as a text messages, comments, likes, is extracted for each post. Each post is classified as belonging to a set of predefined categories and its sentiment is also detected as being positive, negative or neutral. All the comments to that post are therefore analyzed and categorized together with its sentiment polarity. For each category it is created a graph where it is highlighted the concordance of sentiment between the posts and the related comments. The graph can be therefore used to profile the user relationships according to sentiment classification.","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"37 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Facebook Users Relationships Analysis Based on Sentiment Classification\",\"authors\":\"D. Terrana, A. Augello, G. Pilato\",\"doi\":\"10.1109/ICSC.2014.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is presented an approach aimed at analyzing the homepage of a Facebook user or group in order to automatically detect who has discussed what and how it has been discussed. All public posts shared by an user are retrieved by an ad hoc built crawler. Information such as a text messages, comments, likes, is extracted for each post. Each post is classified as belonging to a set of predefined categories and its sentiment is also detected as being positive, negative or neutral. All the comments to that post are therefore analyzed and categorized together with its sentiment polarity. For each category it is created a graph where it is highlighted the concordance of sentiment between the posts and the related comments. The graph can be therefore used to profile the user relationships according to sentiment classification.\",\"PeriodicalId\":175352,\"journal\":{\"name\":\"2014 IEEE International Conference on Semantic Computing\",\"volume\":\"37 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2014.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Facebook Users Relationships Analysis Based on Sentiment Classification
It is presented an approach aimed at analyzing the homepage of a Facebook user or group in order to automatically detect who has discussed what and how it has been discussed. All public posts shared by an user are retrieved by an ad hoc built crawler. Information such as a text messages, comments, likes, is extracted for each post. Each post is classified as belonging to a set of predefined categories and its sentiment is also detected as being positive, negative or neutral. All the comments to that post are therefore analyzed and categorized together with its sentiment polarity. For each category it is created a graph where it is highlighted the concordance of sentiment between the posts and the related comments. The graph can be therefore used to profile the user relationships according to sentiment classification.