自适应神经网络预测对流层臭氧浓度

Riccardo Taormina, L. Mesin, Fiammetta Orione, E. Pasero
{"title":"自适应神经网络预测对流层臭氧浓度","authors":"Riccardo Taormina, L. Mesin, Fiammetta Orione, E. Pasero","doi":"10.1109/IJCNN.2011.6033450","DOIUrl":null,"url":null,"abstract":"The issue of air quality is now a major concern for many citizens worldwide. Local air quality forecasting can be made on the basis of meteorological variables and air pollutants concentration time series. We propose an adaptive filter technique based on an artificial neural network (ANN) to make 24-hours maximal daily ozone-concentrations forecasts.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Forecasting tropospheric ozone concentrations with adaptive neural networks\",\"authors\":\"Riccardo Taormina, L. Mesin, Fiammetta Orione, E. Pasero\",\"doi\":\"10.1109/IJCNN.2011.6033450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The issue of air quality is now a major concern for many citizens worldwide. Local air quality forecasting can be made on the basis of meteorological variables and air pollutants concentration time series. We propose an adaptive filter technique based on an artificial neural network (ANN) to make 24-hours maximal daily ozone-concentrations forecasts.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

空气质量问题现在是全世界许多公民关心的主要问题。利用气象变量和大气污染物浓度时间序列可以进行局部空气质量预报。提出了一种基于人工神经网络(ANN)的自适应滤波技术,用于24小时最大日臭氧浓度预报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting tropospheric ozone concentrations with adaptive neural networks
The issue of air quality is now a major concern for many citizens worldwide. Local air quality forecasting can be made on the basis of meteorological variables and air pollutants concentration time series. We propose an adaptive filter technique based on an artificial neural network (ANN) to make 24-hours maximal daily ozone-concentrations forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信