生成一个合成扩散张量数据集

Ørjan Bergmann, A. Lundervold, T. Steihaug
{"title":"生成一个合成扩散张量数据集","authors":"Ørjan Bergmann, A. Lundervold, T. Steihaug","doi":"10.1109/CBMS.2005.58","DOIUrl":null,"url":null,"abstract":"During the last years, many techniques for de-noising, segmentation and fiber-tracking have been applied to diffusion tensor MR image data (DTI) from human and animal brains. However, evaluating such methods may be difficult on these data since there is no gold standard regarding the true geometry of the brain anatomy or fiber bundles reconstructed in each particular case. In order to study, validate and compare various de-noising and fiber-tracking methods, there is a need for a (mathematical) phantom consisting of semi-realistic images with well-known properties. In this work we generate such a phantom and provide a description of the calculation process all the way up to voxel-wise diffusion tensor visualization.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Generating a synthetic diffusion tensor dataset\",\"authors\":\"Ørjan Bergmann, A. Lundervold, T. Steihaug\",\"doi\":\"10.1109/CBMS.2005.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the last years, many techniques for de-noising, segmentation and fiber-tracking have been applied to diffusion tensor MR image data (DTI) from human and animal brains. However, evaluating such methods may be difficult on these data since there is no gold standard regarding the true geometry of the brain anatomy or fiber bundles reconstructed in each particular case. In order to study, validate and compare various de-noising and fiber-tracking methods, there is a need for a (mathematical) phantom consisting of semi-realistic images with well-known properties. In this work we generate such a phantom and provide a description of the calculation process all the way up to voxel-wise diffusion tensor visualization.\",\"PeriodicalId\":119367,\"journal\":{\"name\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2005.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在过去的几年里,许多去噪、分割和纤维跟踪技术被应用于来自人类和动物大脑的弥散张量MR图像数据(DTI)。然而,评估这些方法在这些数据上可能是困难的,因为没有关于大脑解剖的真实几何形状或在每个特定情况下重建的纤维束的金标准。为了研究、验证和比较各种去噪和光纤跟踪方法,需要一个由具有已知特性的半真实图像组成的(数学)幻像。在这项工作中,我们生成了这样一个幻像,并提供了计算过程的描述,一直到体素扩散张量可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating a synthetic diffusion tensor dataset
During the last years, many techniques for de-noising, segmentation and fiber-tracking have been applied to diffusion tensor MR image data (DTI) from human and animal brains. However, evaluating such methods may be difficult on these data since there is no gold standard regarding the true geometry of the brain anatomy or fiber bundles reconstructed in each particular case. In order to study, validate and compare various de-noising and fiber-tracking methods, there is a need for a (mathematical) phantom consisting of semi-realistic images with well-known properties. In this work we generate such a phantom and provide a description of the calculation process all the way up to voxel-wise diffusion tensor visualization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信