{"title":"基于√I矩阵的LDPC代码设计","authors":"S. G. Srinivasa","doi":"10.1109/ITA.2014.6804247","DOIUrl":null,"url":null,"abstract":"LDPC codes can be constructed by tiling permutation matrices that belong to the square root of identity type and similar algebraic structures. We investigate into the properties of such codes. We also present code structures that are amenable for efficient encoding.","PeriodicalId":338302,"journal":{"name":"2014 Information Theory and Applications Workshop (ITA)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LDPC code designs based on √I matrices\",\"authors\":\"S. G. Srinivasa\",\"doi\":\"10.1109/ITA.2014.6804247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LDPC codes can be constructed by tiling permutation matrices that belong to the square root of identity type and similar algebraic structures. We investigate into the properties of such codes. We also present code structures that are amenable for efficient encoding.\",\"PeriodicalId\":338302,\"journal\":{\"name\":\"2014 Information Theory and Applications Workshop (ITA)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2014.6804247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2014.6804247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LDPC codes can be constructed by tiling permutation matrices that belong to the square root of identity type and similar algebraic structures. We investigate into the properties of such codes. We also present code structures that are amenable for efficient encoding.