单自由度系统的Lucas多项式解

Nurcan Baykuş Savaşaneril
{"title":"单自由度系统的Lucas多项式解","authors":"Nurcan Baykuş Savaşaneril","doi":"10.52460/src.2023.002","DOIUrl":null,"url":null,"abstract":"Free vibration of a single degree of freedom system is a fundamental topic in mechanical vibrations. The present study introduces a novel and simple numerical method for the solution of this system in terms of Lucas polynomials in the matrix form. Particular and general solutions of the differential equation can be determined by this method. The method is illustrated by a numerical application and the results obtained are compared with those of the exact solution.","PeriodicalId":400190,"journal":{"name":"Scientific Research Communications","volume":"223 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lucas Polynomial Solution of the Single Degree of Freedom System\",\"authors\":\"Nurcan Baykuş Savaşaneril\",\"doi\":\"10.52460/src.2023.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Free vibration of a single degree of freedom system is a fundamental topic in mechanical vibrations. The present study introduces a novel and simple numerical method for the solution of this system in terms of Lucas polynomials in the matrix form. Particular and general solutions of the differential equation can be determined by this method. The method is illustrated by a numerical application and the results obtained are compared with those of the exact solution.\",\"PeriodicalId\":400190,\"journal\":{\"name\":\"Scientific Research Communications\",\"volume\":\"223 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Research Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52460/src.2023.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Research Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52460/src.2023.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单自由度系统的自由振动是机械振动中的一个基本问题。本文介绍了一种新的简单的矩阵形式的卢卡斯多项式的数值解法。用这种方法可以确定微分方程的特解和通解。最后通过一个数值实例对该方法进行了说明,并与精确解的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lucas Polynomial Solution of the Single Degree of Freedom System
Free vibration of a single degree of freedom system is a fundamental topic in mechanical vibrations. The present study introduces a novel and simple numerical method for the solution of this system in terms of Lucas polynomials in the matrix form. Particular and general solutions of the differential equation can be determined by this method. The method is illustrated by a numerical application and the results obtained are compared with those of the exact solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信