有效的电子冷却通过流动引起的振动

Aaron Rips, K. Shoele, A. Glezer, R. Mittal
{"title":"有效的电子冷却通过流动引起的振动","authors":"Aaron Rips, K. Shoele, A. Glezer, R. Mittal","doi":"10.1109/SEMI-THERM.2017.7896905","DOIUrl":null,"url":null,"abstract":"A novel method that exploits flow-induced vibration for enhancing heat transfer in electronic cooling applications is explored using coupled flow-structural-thermal modeling. The idea is inspired from wind-instruments where the flow-induced vibration of a “reed” generates sound. In the current approach, a reed installed in a channel with heated walls is shown to generate vortex structures that enhance thermal convection with low pressure loss. Simulations employ a multiphysics approach to model the dynamics of this coupled flow, structure and thermal problem. Through flow visualizations and analyses, the dominant heat transfer enhancement mechanism is identified. Vortical structures shed from the self-actuated fluttering reed cause jetting of cold fluid from the core of the flow towards the heated top and bottom walls of the channel, causing sharper temperature gradients and thus higher heat flux. This mechanism led to 30% higher heat transfer for a fixed flow rate, and an 11% improvement in the thermal enhancement factor.","PeriodicalId":442782,"journal":{"name":"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Efficient electronic cooling via flow-induced vibrations\",\"authors\":\"Aaron Rips, K. Shoele, A. Glezer, R. Mittal\",\"doi\":\"10.1109/SEMI-THERM.2017.7896905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method that exploits flow-induced vibration for enhancing heat transfer in electronic cooling applications is explored using coupled flow-structural-thermal modeling. The idea is inspired from wind-instruments where the flow-induced vibration of a “reed” generates sound. In the current approach, a reed installed in a channel with heated walls is shown to generate vortex structures that enhance thermal convection with low pressure loss. Simulations employ a multiphysics approach to model the dynamics of this coupled flow, structure and thermal problem. Through flow visualizations and analyses, the dominant heat transfer enhancement mechanism is identified. Vortical structures shed from the self-actuated fluttering reed cause jetting of cold fluid from the core of the flow towards the heated top and bottom walls of the channel, causing sharper temperature gradients and thus higher heat flux. This mechanism led to 30% higher heat transfer for a fixed flow rate, and an 11% improvement in the thermal enhancement factor.\",\"PeriodicalId\":442782,\"journal\":{\"name\":\"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEMI-THERM.2017.7896905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEMI-THERM.2017.7896905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

采用流动-结构-热耦合模型,探索了一种利用流动诱发振动来增强电子冷却应用中的传热的新方法。这个想法的灵感来自于管乐器,其中“簧片”的流动引起的振动产生声音。在目前的方法中,将簧片安装在带有加热壁的通道中,可以产生涡流结构,以低压力损失增强热对流。模拟采用多物理场方法来模拟这种耦合流动、结构和热问题的动力学。通过流动可视化和分析,确定了主要的强化传热机制。自动颤振簧片脱落的涡状结构导致冷流体从流动核心向通道加热的顶部和底部壁面喷射,造成更大的温度梯度,从而产生更高的热流密度。在固定流量下,该机制可使传热提高30%,热增强系数提高11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient electronic cooling via flow-induced vibrations
A novel method that exploits flow-induced vibration for enhancing heat transfer in electronic cooling applications is explored using coupled flow-structural-thermal modeling. The idea is inspired from wind-instruments where the flow-induced vibration of a “reed” generates sound. In the current approach, a reed installed in a channel with heated walls is shown to generate vortex structures that enhance thermal convection with low pressure loss. Simulations employ a multiphysics approach to model the dynamics of this coupled flow, structure and thermal problem. Through flow visualizations and analyses, the dominant heat transfer enhancement mechanism is identified. Vortical structures shed from the self-actuated fluttering reed cause jetting of cold fluid from the core of the flow towards the heated top and bottom walls of the channel, causing sharper temperature gradients and thus higher heat flux. This mechanism led to 30% higher heat transfer for a fixed flow rate, and an 11% improvement in the thermal enhancement factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信