P. Burrage, Kevin Burrage, K. Kurowski, Michal T. Lorenc, Dan V. Nicolau, M. Swain, M. Ragan
{"title":"平行质膜模拟","authors":"P. Burrage, Kevin Burrage, K. Kurowski, Michal T. Lorenc, Dan V. Nicolau, M. Swain, M. Ragan","doi":"10.1109/HIBI.2009.18","DOIUrl":null,"url":null,"abstract":"The plasma membrane protects a cell and even though it is only about 10nm thick it is an incredibly complex and crowded environment, with ensembles of channels, membrane and trans-membrane proteins and microdomains. Hence modelling transport and dynamical processes on the plasma membrane is computationally demanding and in order for a simulation to model an entire cell membrane for several real-time seconds, a high-performance computing implementation is essential. Here we describe the domain decomposition of a plasma membrane simulation in a grid-computing environment. We discuss the issues that arise in balancing the communication requirements with the computational complexity, in both a master-slave and a slave-slave communication model.We also discuss performance and fidelity limitations arising through the necessity of frequent inter-process communication. This parallel implementation will allow systems biology researchers to analyse computationally the complex dynamical processes taking place on an entire cell membrane over a non-trivial time scale.","PeriodicalId":403061,"journal":{"name":"2009 International Workshop on High Performance Computational Systems Biology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Parallel Plasma Membrane Simulation\",\"authors\":\"P. Burrage, Kevin Burrage, K. Kurowski, Michal T. Lorenc, Dan V. Nicolau, M. Swain, M. Ragan\",\"doi\":\"10.1109/HIBI.2009.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The plasma membrane protects a cell and even though it is only about 10nm thick it is an incredibly complex and crowded environment, with ensembles of channels, membrane and trans-membrane proteins and microdomains. Hence modelling transport and dynamical processes on the plasma membrane is computationally demanding and in order for a simulation to model an entire cell membrane for several real-time seconds, a high-performance computing implementation is essential. Here we describe the domain decomposition of a plasma membrane simulation in a grid-computing environment. We discuss the issues that arise in balancing the communication requirements with the computational complexity, in both a master-slave and a slave-slave communication model.We also discuss performance and fidelity limitations arising through the necessity of frequent inter-process communication. This parallel implementation will allow systems biology researchers to analyse computationally the complex dynamical processes taking place on an entire cell membrane over a non-trivial time scale.\",\"PeriodicalId\":403061,\"journal\":{\"name\":\"2009 International Workshop on High Performance Computational Systems Biology\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on High Performance Computational Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIBI.2009.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on High Performance Computational Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIBI.2009.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The plasma membrane protects a cell and even though it is only about 10nm thick it is an incredibly complex and crowded environment, with ensembles of channels, membrane and trans-membrane proteins and microdomains. Hence modelling transport and dynamical processes on the plasma membrane is computationally demanding and in order for a simulation to model an entire cell membrane for several real-time seconds, a high-performance computing implementation is essential. Here we describe the domain decomposition of a plasma membrane simulation in a grid-computing environment. We discuss the issues that arise in balancing the communication requirements with the computational complexity, in both a master-slave and a slave-slave communication model.We also discuss performance and fidelity limitations arising through the necessity of frequent inter-process communication. This parallel implementation will allow systems biology researchers to analyse computationally the complex dynamical processes taking place on an entire cell membrane over a non-trivial time scale.