有向图中的顶点划分问题

M. Sambinelli, C. N. Lintzmayer, C. N. D. Silva, Orlando Lee
{"title":"有向图中的顶点划分问题","authors":"M. Sambinelli, C. N. Lintzmayer, C. N. D. Silva, Orlando Lee","doi":"10.5753/etc.2018.3174","DOIUrl":null,"url":null,"abstract":"Let D be a digraph and k be a positive integer. Linial (1981) conjectured that the k-norm of a k-minimum path partition of a digraph D is at most max{PC2 C |C| : C is a partial k-coloring of D}. Berge (1982) conjectured that every k-minimum path partition contains a partial k-coloring orthogonal to it. It is well known that Berge's Conjecture implies Linial's Conjecture. In this work, we verify Berge's Conjecture, and consequently Linial's Conjecture, for locally in-semicomplete digraphs and k-minimum path partitions containing only two paths. Moreover, we verify a conjecture related to Berge's and Linial's Conjectures for locally in-semicomplete digraphs.","PeriodicalId":315906,"journal":{"name":"Anais do Encontro de Teoria da Computação (ETC)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vertex partition problems in digraphs ⇤\",\"authors\":\"M. Sambinelli, C. N. Lintzmayer, C. N. D. Silva, Orlando Lee\",\"doi\":\"10.5753/etc.2018.3174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let D be a digraph and k be a positive integer. Linial (1981) conjectured that the k-norm of a k-minimum path partition of a digraph D is at most max{PC2 C |C| : C is a partial k-coloring of D}. Berge (1982) conjectured that every k-minimum path partition contains a partial k-coloring orthogonal to it. It is well known that Berge's Conjecture implies Linial's Conjecture. In this work, we verify Berge's Conjecture, and consequently Linial's Conjecture, for locally in-semicomplete digraphs and k-minimum path partitions containing only two paths. Moreover, we verify a conjecture related to Berge's and Linial's Conjectures for locally in-semicomplete digraphs.\",\"PeriodicalId\":315906,\"journal\":{\"name\":\"Anais do Encontro de Teoria da Computação (ETC)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do Encontro de Teoria da Computação (ETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/etc.2018.3174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Encontro de Teoria da Computação (ETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/etc.2018.3174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设D为有向图,k为正整数。Linial(1981)推测有向图D的k最小路径分区的k范数不超过max{PC2 C| C|: C是D的部分k着色}。Berge(1982)推测,每一个k最小路径分区都包含一个与它正交的部分k着色。众所周知,贝尔热猜想蕴涵着利纳尔猜想。在这项工作中,我们验证了Berge的猜想,从而验证了Linial的猜想,对于局部半完全有向图和k-最小路径分区只包含两条路径。此外,我们还验证了局部半完全有向图的Berge猜想和Linial猜想的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vertex partition problems in digraphs ⇤
Let D be a digraph and k be a positive integer. Linial (1981) conjectured that the k-norm of a k-minimum path partition of a digraph D is at most max{PC2 C |C| : C is a partial k-coloring of D}. Berge (1982) conjectured that every k-minimum path partition contains a partial k-coloring orthogonal to it. It is well known that Berge's Conjecture implies Linial's Conjecture. In this work, we verify Berge's Conjecture, and consequently Linial's Conjecture, for locally in-semicomplete digraphs and k-minimum path partitions containing only two paths. Moreover, we verify a conjecture related to Berge's and Linial's Conjectures for locally in-semicomplete digraphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信