3D跟踪=分类+插值

Carlo Tomasi, Slav Petrov, A. Sastry
{"title":"3D跟踪=分类+插值","authors":"Carlo Tomasi, Slav Petrov, A. Sastry","doi":"10.1109/ICCV.2003.1238659","DOIUrl":null,"url":null,"abstract":"Hand gestures are examples of fast and complex motions. Computers fail to track these in fast video, but sleight of hand fools humans as well: what happens too quickly we just cannot see. We show a 3D tracker for these types of motions that relies on the recognition of familiar configurations in 2D images (classification), and fills the gaps in-between (interpolation). We illustrate this idea with experiments on hand motions similar to finger spelling. The penalty for a recognition failure is often small: if two configurations are confused, they are often similar to each other, and the illusion works well enough, for instance, to drive a graphics animation of the moving hand. We contribute advances in both feature design and classifier training: our image features are invariant to image scale, translation, and rotation, and we propose a classification method that combines VQPCA with discrimination trees.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"113","resultStr":"{\"title\":\"3D tracking = classification + interpolation\",\"authors\":\"Carlo Tomasi, Slav Petrov, A. Sastry\",\"doi\":\"10.1109/ICCV.2003.1238659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hand gestures are examples of fast and complex motions. Computers fail to track these in fast video, but sleight of hand fools humans as well: what happens too quickly we just cannot see. We show a 3D tracker for these types of motions that relies on the recognition of familiar configurations in 2D images (classification), and fills the gaps in-between (interpolation). We illustrate this idea with experiments on hand motions similar to finger spelling. The penalty for a recognition failure is often small: if two configurations are confused, they are often similar to each other, and the illusion works well enough, for instance, to drive a graphics animation of the moving hand. We contribute advances in both feature design and classifier training: our image features are invariant to image scale, translation, and rotation, and we propose a classification method that combines VQPCA with discrimination trees.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"113\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 113

摘要

手势是快速和复杂动作的例子。在快速视频中,电脑无法追踪到这些变化,但手法也能骗过人类:发生得太快的情况我们根本看不见。我们为这些类型的运动展示了一个3D跟踪器,它依赖于对2D图像中熟悉配置的识别(分类),并填补了两者之间的空白(插值)。我们用类似于手指拼写的手部动作实验来说明这个观点。对识别失败的惩罚通常很小:如果混淆了两种配置,它们通常是相似的,而且这种错觉效果很好,例如,可以驱动移动的手的图形动画。我们在特征设计和分类器训练方面都取得了进展:我们的图像特征对图像尺度、平移和旋转不变化,我们提出了一种将VQPCA与识别树相结合的分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D tracking = classification + interpolation
Hand gestures are examples of fast and complex motions. Computers fail to track these in fast video, but sleight of hand fools humans as well: what happens too quickly we just cannot see. We show a 3D tracker for these types of motions that relies on the recognition of familiar configurations in 2D images (classification), and fills the gaps in-between (interpolation). We illustrate this idea with experiments on hand motions similar to finger spelling. The penalty for a recognition failure is often small: if two configurations are confused, they are often similar to each other, and the illusion works well enough, for instance, to drive a graphics animation of the moving hand. We contribute advances in both feature design and classifier training: our image features are invariant to image scale, translation, and rotation, and we propose a classification method that combines VQPCA with discrimination trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信