基于寄存器的稀疏一般矩阵-矩阵乘法在gpu上的实现

Junhong Liu, Xinchao He, Weifeng Liu, Guangming Tan
{"title":"基于寄存器的稀疏一般矩阵-矩阵乘法在gpu上的实现","authors":"Junhong Liu, Xinchao He, Weifeng Liu, Guangming Tan","doi":"10.1145/3178487.3178529","DOIUrl":null,"url":null,"abstract":"General sparse matrix-matrix multiplication (SpGEMM) is an essential building block in a number of applications. In our work, we fully utilize GPU registers and shared memory to implement an efficient and load balanced SpGEMM in comparison with the existing implementations.","PeriodicalId":193776,"journal":{"name":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Register-based implementation of the sparse general matrix-matrix multiplication on GPUs\",\"authors\":\"Junhong Liu, Xinchao He, Weifeng Liu, Guangming Tan\",\"doi\":\"10.1145/3178487.3178529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"General sparse matrix-matrix multiplication (SpGEMM) is an essential building block in a number of applications. In our work, we fully utilize GPU registers and shared memory to implement an efficient and load balanced SpGEMM in comparison with the existing implementations.\",\"PeriodicalId\":193776,\"journal\":{\"name\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3178487.3178529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178487.3178529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

一般稀疏矩阵-矩阵乘法(SpGEMM)是许多应用程序中必不可少的组成部分。在我们的工作中,与现有的实现相比,我们充分利用GPU寄存器和共享内存来实现高效和负载均衡的SpGEMM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Register-based implementation of the sparse general matrix-matrix multiplication on GPUs
General sparse matrix-matrix multiplication (SpGEMM) is an essential building block in a number of applications. In our work, we fully utilize GPU registers and shared memory to implement an efficient and load balanced SpGEMM in comparison with the existing implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信