Junhong Liu, Xinchao He, Weifeng Liu, Guangming Tan
{"title":"基于寄存器的稀疏一般矩阵-矩阵乘法在gpu上的实现","authors":"Junhong Liu, Xinchao He, Weifeng Liu, Guangming Tan","doi":"10.1145/3178487.3178529","DOIUrl":null,"url":null,"abstract":"General sparse matrix-matrix multiplication (SpGEMM) is an essential building block in a number of applications. In our work, we fully utilize GPU registers and shared memory to implement an efficient and load balanced SpGEMM in comparison with the existing implementations.","PeriodicalId":193776,"journal":{"name":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Register-based implementation of the sparse general matrix-matrix multiplication on GPUs\",\"authors\":\"Junhong Liu, Xinchao He, Weifeng Liu, Guangming Tan\",\"doi\":\"10.1145/3178487.3178529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"General sparse matrix-matrix multiplication (SpGEMM) is an essential building block in a number of applications. In our work, we fully utilize GPU registers and shared memory to implement an efficient and load balanced SpGEMM in comparison with the existing implementations.\",\"PeriodicalId\":193776,\"journal\":{\"name\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3178487.3178529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178487.3178529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Register-based implementation of the sparse general matrix-matrix multiplication on GPUs
General sparse matrix-matrix multiplication (SpGEMM) is an essential building block in a number of applications. In our work, we fully utilize GPU registers and shared memory to implement an efficient and load balanced SpGEMM in comparison with the existing implementations.