无源和有源中介系统成本最优的片上网络研究

Dylan C. Stow, Itir Akgun, Yuan Xie
{"title":"无源和有源中介系统成本最优的片上网络研究","authors":"Dylan C. Stow, Itir Akgun, Yuan Xie","doi":"10.1109/SLIP.2019.8771333","DOIUrl":null,"url":null,"abstract":"Interposer-based packaging is becoming a widespread methodology for tightly integrating multiple heterogeneous dies into a single package, with the potential to improve manufacturing yield and build larger-than-reticle-sized systems. However, interposer integration also introduces possible communication bottlenecks and cost overheads that can outweigh these benefits. To avoid these drawbacks, the abundant interposer interconnect can be leveraged as network-on-chip interconnection fabric to provide high-bandwidth, low-latency communication between chiplets and memory stacks. This work investigates this new interposer design space of passive and active interposer technologies, network-on-chip topologies, and clocking schemes to determine the cost-optimal interposer architectures for a range of performance requirements.","PeriodicalId":340036,"journal":{"name":"2019 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Investigation of Cost-Optimal Network-on-Chip for Passive and Active Interposer Systems\",\"authors\":\"Dylan C. Stow, Itir Akgun, Yuan Xie\",\"doi\":\"10.1109/SLIP.2019.8771333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interposer-based packaging is becoming a widespread methodology for tightly integrating multiple heterogeneous dies into a single package, with the potential to improve manufacturing yield and build larger-than-reticle-sized systems. However, interposer integration also introduces possible communication bottlenecks and cost overheads that can outweigh these benefits. To avoid these drawbacks, the abundant interposer interconnect can be leveraged as network-on-chip interconnection fabric to provide high-bandwidth, low-latency communication between chiplets and memory stacks. This work investigates this new interposer design space of passive and active interposer technologies, network-on-chip topologies, and clocking schemes to determine the cost-optimal interposer architectures for a range of performance requirements.\",\"PeriodicalId\":340036,\"journal\":{\"name\":\"2019 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLIP.2019.8771333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLIP.2019.8771333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

基于中间层的封装正在成为一种广泛的方法,将多个异质芯片紧密集成到单个封装中,具有提高制造良率和构建比十字线尺寸更大的系统的潜力。然而,中间层集成也引入了可能的通信瓶颈和成本开销,这些可能会超过这些好处。为了避免这些缺点,可以利用丰富的中间层互连作为片上网络互连结构,在小芯片和内存堆栈之间提供高带宽、低延迟的通信。这项工作研究了无源和有源中介技术、片上网络拓扑和时钟方案的新中介设计空间,以确定满足一系列性能要求的成本最优中介架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Cost-Optimal Network-on-Chip for Passive and Active Interposer Systems
Interposer-based packaging is becoming a widespread methodology for tightly integrating multiple heterogeneous dies into a single package, with the potential to improve manufacturing yield and build larger-than-reticle-sized systems. However, interposer integration also introduces possible communication bottlenecks and cost overheads that can outweigh these benefits. To avoid these drawbacks, the abundant interposer interconnect can be leveraged as network-on-chip interconnection fabric to provide high-bandwidth, low-latency communication between chiplets and memory stacks. This work investigates this new interposer design space of passive and active interposer technologies, network-on-chip topologies, and clocking schemes to determine the cost-optimal interposer architectures for a range of performance requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信