仿射参数化不可微优化设计问题解的域重标技术

E. Polak, E. Wiest
{"title":"仿射参数化不可微优化设计问题解的域重标技术","authors":"E. Polak, E. Wiest","doi":"10.1109/CDC.1988.194731","DOIUrl":null,"url":null,"abstract":"The authors show that the affine parametrizations used in the design of feedback compensators and open-loop optimal controls can lead to severely ill-conditioned optimization problems. The effect of this ill-conditioning is to cause many optimization algorithms to converge very slowly. They describe a domain rescaling technique which considerably mitigates this ill-conditioning. The technique is applied to both differentiable and minimax problems. A numerical example of a minimax problem involving two scaling matrices is given.<<ETX>>","PeriodicalId":113534,"journal":{"name":"Proceedings of the 27th IEEE Conference on Decision and Control","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Domain rescaling techniques for the solution of affinely parametrized nondifferentiable optimal design problems\",\"authors\":\"E. Polak, E. Wiest\",\"doi\":\"10.1109/CDC.1988.194731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors show that the affine parametrizations used in the design of feedback compensators and open-loop optimal controls can lead to severely ill-conditioned optimization problems. The effect of this ill-conditioning is to cause many optimization algorithms to converge very slowly. They describe a domain rescaling technique which considerably mitigates this ill-conditioning. The technique is applied to both differentiable and minimax problems. A numerical example of a minimax problem involving two scaling matrices is given.<<ETX>>\",\"PeriodicalId\":113534,\"journal\":{\"name\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1988.194731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1988.194731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

作者指出,在设计反馈补偿器和开环最优控制时使用仿射参数化会导致严重的病态优化问题。这种不良条件的影响是导致许多优化算法收敛速度非常慢。他们描述了一种域重标技术,该技术大大减轻了这种不适。该方法适用于可微问题和极大极小问题。给出了一个涉及两个标度矩阵的极大极小问题的数值例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain rescaling techniques for the solution of affinely parametrized nondifferentiable optimal design problems
The authors show that the affine parametrizations used in the design of feedback compensators and open-loop optimal controls can lead to severely ill-conditioned optimization problems. The effect of this ill-conditioning is to cause many optimization algorithms to converge very slowly. They describe a domain rescaling technique which considerably mitigates this ill-conditioning. The technique is applied to both differentiable and minimax problems. A numerical example of a minimax problem involving two scaling matrices is given.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信