基于二元回归模型的两个区间数据模式分类器

R. Souza, F. Cysneiros, D. C. F. Queiroz, Roberta Fagundes
{"title":"基于二元回归模型的两个区间数据模式分类器","authors":"R. Souza, F. Cysneiros, D. C. F. Queiroz, Roberta Fagundes","doi":"10.1109/ICDIM.2008.4746705","DOIUrl":null,"url":null,"abstract":"This paper introduces two classifiers for interval symbolic data based on logit and probit regression models, respectively. Each example of the learning set is described by a feature vector, for which each feature value is an interval and a binary response that defines the class of this example. For each classifier two versions are considered. First fits a classic binary regression model conjointly on the lower and upper bounds of the interval values assumed by the variables in the learning set. Second fits a classic binary regression model separately on the lower and upper bounds of the intervals. The prediction of the class for new examples is accomplished from the computation of the posterior probabilities of the classes. To show the usefulness of this method, examples with synthetic symbolic data sets with overlapping classes are considered.","PeriodicalId":415013,"journal":{"name":"2008 Third International Conference on Digital Information Management","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two pattern classifiers for interval data based on binary regression models\",\"authors\":\"R. Souza, F. Cysneiros, D. C. F. Queiroz, Roberta Fagundes\",\"doi\":\"10.1109/ICDIM.2008.4746705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces two classifiers for interval symbolic data based on logit and probit regression models, respectively. Each example of the learning set is described by a feature vector, for which each feature value is an interval and a binary response that defines the class of this example. For each classifier two versions are considered. First fits a classic binary regression model conjointly on the lower and upper bounds of the interval values assumed by the variables in the learning set. Second fits a classic binary regression model separately on the lower and upper bounds of the intervals. The prediction of the class for new examples is accomplished from the computation of the posterior probabilities of the classes. To show the usefulness of this method, examples with synthetic symbolic data sets with overlapping classes are considered.\",\"PeriodicalId\":415013,\"journal\":{\"name\":\"2008 Third International Conference on Digital Information Management\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Third International Conference on Digital Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIM.2008.4746705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Third International Conference on Digital Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2008.4746705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分别介绍了基于logit和probit回归模型的区间符号数据分类器。学习集的每个示例由一个特征向量描述,其中每个特征值是一个区间和一个定义该示例类的二进制响应。对于每个分类器考虑两个版本。首先在学习集中的变量所假设的区间值的下界和上界联合拟合一个经典的二元回归模型。其次分别在区间的下界和上界拟合经典二元回归模型。对新样本的类的预测是通过计算类的后验概率来完成的。为了证明该方法的有效性,我们考虑了具有重叠类的合成符号数据集的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two pattern classifiers for interval data based on binary regression models
This paper introduces two classifiers for interval symbolic data based on logit and probit regression models, respectively. Each example of the learning set is described by a feature vector, for which each feature value is an interval and a binary response that defines the class of this example. For each classifier two versions are considered. First fits a classic binary regression model conjointly on the lower and upper bounds of the interval values assumed by the variables in the learning set. Second fits a classic binary regression model separately on the lower and upper bounds of the intervals. The prediction of the class for new examples is accomplished from the computation of the posterior probabilities of the classes. To show the usefulness of this method, examples with synthetic symbolic data sets with overlapping classes are considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信