{"title":"刚体碰撞的触觉渲染","authors":"D. Constantinescu, S. Salcudean, E. Croft","doi":"10.1109/HAPTIC.2004.1287171","DOIUrl":null,"url":null,"abstract":"This paper addresses the haptic rendering of rigid body collisions. A new method is proposed in which collision rendering is achieved in two steps. First, the haptic simulation uses a contact model whose stiffness is infinite during collisions and finite during sustained contact. This model is combined with a passive collision resolution scheme to compute collision impulses when new contacts arise. Second, the impulses are applied to the user's hand by a controller that coordinates forces and positions between the virtual environment and the haptic interface. Haptic rendering of rigid body collisions imparts forces that generate large hand accelerations when new contacts arise without requiring increased contact stiffness and damping. Experiments with a planar rigid virtual world validate the proposed approach.","PeriodicalId":384123,"journal":{"name":"12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS '04. Proceedings.","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Haptic rendering of rigid body collisions\",\"authors\":\"D. Constantinescu, S. Salcudean, E. Croft\",\"doi\":\"10.1109/HAPTIC.2004.1287171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the haptic rendering of rigid body collisions. A new method is proposed in which collision rendering is achieved in two steps. First, the haptic simulation uses a contact model whose stiffness is infinite during collisions and finite during sustained contact. This model is combined with a passive collision resolution scheme to compute collision impulses when new contacts arise. Second, the impulses are applied to the user's hand by a controller that coordinates forces and positions between the virtual environment and the haptic interface. Haptic rendering of rigid body collisions imparts forces that generate large hand accelerations when new contacts arise without requiring increased contact stiffness and damping. Experiments with a planar rigid virtual world validate the proposed approach.\",\"PeriodicalId\":384123,\"journal\":{\"name\":\"12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS '04. Proceedings.\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS '04. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HAPTIC.2004.1287171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS '04. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HAPTIC.2004.1287171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper addresses the haptic rendering of rigid body collisions. A new method is proposed in which collision rendering is achieved in two steps. First, the haptic simulation uses a contact model whose stiffness is infinite during collisions and finite during sustained contact. This model is combined with a passive collision resolution scheme to compute collision impulses when new contacts arise. Second, the impulses are applied to the user's hand by a controller that coordinates forces and positions between the virtual environment and the haptic interface. Haptic rendering of rigid body collisions imparts forces that generate large hand accelerations when new contacts arise without requiring increased contact stiffness and damping. Experiments with a planar rigid virtual world validate the proposed approach.