基于SSSC的异步电机故障转矩间接控制

F. Faradjizadeh, M. Tavakoli, J. Olamaei, E. Afjei
{"title":"基于SSSC的异步电机故障转矩间接控制","authors":"F. Faradjizadeh, M. Tavakoli, J. Olamaei, E. Afjei","doi":"10.1109/CTPP.2014.7040711","DOIUrl":null,"url":null,"abstract":"This paper presents a novel control method for an induction machine (IM) connected to the network through the Static Synchronous Series Compensator (SSSC) and parallel capacitor at the IM's terminals. By segregating the operational states into three sequential operational zones namely, normal (0), during-fault (1), and after-fault recovery (2). Each state provides an appropriate controlling process for SSSC to improve the operation of induction machine. In normal operation the goal is to improve the power flow and transient stability. Fault operation deals with rotor acceleration which is decreased by utilizing SSSC in resistive mode. Recovery state employs the Indirect Torque Control (ITC) concept to improve the electro-mechanical stability. Tuning the parameters of the two operational states mentioned above, (1) and (2), modifying the IM's terminal voltage and grid side voltage modification according to Low Voltage Ride-Through (LVRT) limitation is possible. The proposed concept has been proved by time domain simulation in MATLAB power system block sets which shows that suggested method has a more robust operation compared to static synchronous compensator (STATCOM) and less electro-magnetic stresses compared to SSSC without ITC.","PeriodicalId":226320,"journal":{"name":"2014 5th Conference on Thermal Power Plants (CTPP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using SSSC based induction machines for indirect toque control during fault\",\"authors\":\"F. Faradjizadeh, M. Tavakoli, J. Olamaei, E. Afjei\",\"doi\":\"10.1109/CTPP.2014.7040711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel control method for an induction machine (IM) connected to the network through the Static Synchronous Series Compensator (SSSC) and parallel capacitor at the IM's terminals. By segregating the operational states into three sequential operational zones namely, normal (0), during-fault (1), and after-fault recovery (2). Each state provides an appropriate controlling process for SSSC to improve the operation of induction machine. In normal operation the goal is to improve the power flow and transient stability. Fault operation deals with rotor acceleration which is decreased by utilizing SSSC in resistive mode. Recovery state employs the Indirect Torque Control (ITC) concept to improve the electro-mechanical stability. Tuning the parameters of the two operational states mentioned above, (1) and (2), modifying the IM's terminal voltage and grid side voltage modification according to Low Voltage Ride-Through (LVRT) limitation is possible. The proposed concept has been proved by time domain simulation in MATLAB power system block sets which shows that suggested method has a more robust operation compared to static synchronous compensator (STATCOM) and less electro-magnetic stresses compared to SSSC without ITC.\",\"PeriodicalId\":226320,\"journal\":{\"name\":\"2014 5th Conference on Thermal Power Plants (CTPP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 5th Conference on Thermal Power Plants (CTPP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CTPP.2014.7040711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 5th Conference on Thermal Power Plants (CTPP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CTPP.2014.7040711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种通过静态同步串联补偿器(SSSC)和异步电机两端并联电容与电网连接的异步电机控制新方法。通过将运行状态依次划分为正常(0)、故障时(1)和故障恢复后(2)三个运行区域,每个状态都为SSSC提供了合适的控制过程,以改善感应电机的运行。在正常运行时,目标是改善潮流和暂态稳定性。故障运行处理转子加速度,在电阻模式下利用SSSC减小转子加速度。恢复状态采用间接转矩控制(ITC)的概念来提高机电稳定性。调整上述(1)和(2)两种运行状态的参数,根据低电压穿越(LVRT)限制修改IM的终端电压和电网侧电压修改是可能的。通过MATLAB电力系统块集的时域仿真验证了该方法的有效性,结果表明,与静态同步补偿器(STATCOM)相比,该方法具有更强的鲁棒性,与不含ITC的SSSC相比,该方法具有更小的电磁应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using SSSC based induction machines for indirect toque control during fault
This paper presents a novel control method for an induction machine (IM) connected to the network through the Static Synchronous Series Compensator (SSSC) and parallel capacitor at the IM's terminals. By segregating the operational states into three sequential operational zones namely, normal (0), during-fault (1), and after-fault recovery (2). Each state provides an appropriate controlling process for SSSC to improve the operation of induction machine. In normal operation the goal is to improve the power flow and transient stability. Fault operation deals with rotor acceleration which is decreased by utilizing SSSC in resistive mode. Recovery state employs the Indirect Torque Control (ITC) concept to improve the electro-mechanical stability. Tuning the parameters of the two operational states mentioned above, (1) and (2), modifying the IM's terminal voltage and grid side voltage modification according to Low Voltage Ride-Through (LVRT) limitation is possible. The proposed concept has been proved by time domain simulation in MATLAB power system block sets which shows that suggested method has a more robust operation compared to static synchronous compensator (STATCOM) and less electro-magnetic stresses compared to SSSC without ITC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信