{"title":"改进变精度粗糙集模型及其在远程学习中的应用","authors":"A. Abbas, Juan Liu, S. O. Mahdi","doi":"10.1109/CIS.2007.41","DOIUrl":null,"url":null,"abstract":"Improved Variable Precision Rough Set (VPRS) is proposed to extract the significant decision rules from a Student Information Table (SIT) in the distance learning environment. Moreover, two approaches are proposed. The first approach, VPRS based on Bayesian Confirmation Measures (BCM) is presented in order to handle totally ambiguous and enhance the precision of Rough set, and to deal with multi decision classes. The second approach, the VPRS parameters are refined, especially with multi decision classes. These concepts have been demonstrated by an example. The simulated result gives good accuracy and precise information with few computational steps.","PeriodicalId":127238,"journal":{"name":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Improved Variable Precision Rough Set Model and its Application to Distance Learning\",\"authors\":\"A. Abbas, Juan Liu, S. O. Mahdi\",\"doi\":\"10.1109/CIS.2007.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improved Variable Precision Rough Set (VPRS) is proposed to extract the significant decision rules from a Student Information Table (SIT) in the distance learning environment. Moreover, two approaches are proposed. The first approach, VPRS based on Bayesian Confirmation Measures (BCM) is presented in order to handle totally ambiguous and enhance the precision of Rough set, and to deal with multi decision classes. The second approach, the VPRS parameters are refined, especially with multi decision classes. These concepts have been demonstrated by an example. The simulated result gives good accuracy and precise information with few computational steps.\",\"PeriodicalId\":127238,\"journal\":{\"name\":\"2007 International Conference on Computational Intelligence and Security (CIS 2007)\",\"volume\":\"304 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computational Intelligence and Security (CIS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2007.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2007.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved Variable Precision Rough Set Model and its Application to Distance Learning
Improved Variable Precision Rough Set (VPRS) is proposed to extract the significant decision rules from a Student Information Table (SIT) in the distance learning environment. Moreover, two approaches are proposed. The first approach, VPRS based on Bayesian Confirmation Measures (BCM) is presented in order to handle totally ambiguous and enhance the precision of Rough set, and to deal with multi decision classes. The second approach, the VPRS parameters are refined, especially with multi decision classes. These concepts have been demonstrated by an example. The simulated result gives good accuracy and precise information with few computational steps.