非平稳分布噪声下的单壳回原点概率扩散Mri测量

Tomasz Pieciak, Fabian Bogusz, A. Tristán-Vega, Rodrigo de Luis García, S. Aja‐Fernández
{"title":"非平稳分布噪声下的单壳回原点概率扩散Mri测量","authors":"Tomasz Pieciak, Fabian Bogusz, A. Tristán-Vega, Rodrigo de Luis García, S. Aja‐Fernández","doi":"10.1109/ISBI.2019.8759165","DOIUrl":null,"url":null,"abstract":"The Ensemble Average Propagator (EAP) provides a compact theoretical framework to explore the underlying microstructural properties of the tissues with diffusion magnetic resonance imaging. To model tissue characteristics, it is usually required to fit a functional basis to a densely sampled q-space data and then retrieve the EAP-related maps. In this work, we analytically derive a new closed-form formula to calculate one of the EAP features the Return-To-the-Origin Probability (RTOP) map directly from the data leaving aside the EAP estimation step. Our RTOP estimation approach exploits only single-shell data and additionally handles noise-induced bias using a non-stationary log-Rician statistics. We validated our proposal using an in vivo Human Connectome Project database achieving an increased accuracy of the method when subsampling of the q-space was considered and strong correlations to multiple-shell state-of-the-art methods.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Single-Shell Return-to-the-Origin Probability Diffusion Mri Measure Under a Non-Stationary Rician Distributed Noise\",\"authors\":\"Tomasz Pieciak, Fabian Bogusz, A. Tristán-Vega, Rodrigo de Luis García, S. Aja‐Fernández\",\"doi\":\"10.1109/ISBI.2019.8759165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ensemble Average Propagator (EAP) provides a compact theoretical framework to explore the underlying microstructural properties of the tissues with diffusion magnetic resonance imaging. To model tissue characteristics, it is usually required to fit a functional basis to a densely sampled q-space data and then retrieve the EAP-related maps. In this work, we analytically derive a new closed-form formula to calculate one of the EAP features the Return-To-the-Origin Probability (RTOP) map directly from the data leaving aside the EAP estimation step. Our RTOP estimation approach exploits only single-shell data and additionally handles noise-induced bias using a non-stationary log-Rician statistics. We validated our proposal using an in vivo Human Connectome Project database achieving an increased accuracy of the method when subsampling of the q-space was considered and strong correlations to multiple-shell state-of-the-art methods.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

系综平均传播子(EAP)提供了一个紧凑的理论框架,可以通过扩散磁共振成像来探索组织的潜在微观结构特性。为了建立组织特征模型,通常需要将功能基拟合到密集采样的q空间数据中,然后检索eap相关图。在这项工作中,我们分析推导了一个新的封闭形式公式来计算EAP特征之一,即直接从数据中返回到原点概率(RTOP)图,而忽略了EAP估计步骤。我们的RTOP估计方法仅利用单壳数据,并使用非平稳log- doctor统计数据处理噪声引起的偏差。我们使用体内人类连接组项目数据库验证了我们的建议,在考虑q空间的子采样和与多壳最先进方法的强相关性时,实现了该方法的准确性提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-Shell Return-to-the-Origin Probability Diffusion Mri Measure Under a Non-Stationary Rician Distributed Noise
The Ensemble Average Propagator (EAP) provides a compact theoretical framework to explore the underlying microstructural properties of the tissues with diffusion magnetic resonance imaging. To model tissue characteristics, it is usually required to fit a functional basis to a densely sampled q-space data and then retrieve the EAP-related maps. In this work, we analytically derive a new closed-form formula to calculate one of the EAP features the Return-To-the-Origin Probability (RTOP) map directly from the data leaving aside the EAP estimation step. Our RTOP estimation approach exploits only single-shell data and additionally handles noise-induced bias using a non-stationary log-Rician statistics. We validated our proposal using an in vivo Human Connectome Project database achieving an increased accuracy of the method when subsampling of the q-space was considered and strong correlations to multiple-shell state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信