数据流中快速分类的增量学习算法

S. Fong, Zhicong Luo, B. W. Yap
{"title":"数据流中快速分类的增量学习算法","authors":"S. Fong, Zhicong Luo, B. W. Yap","doi":"10.1109/ISCBI.2013.45","DOIUrl":null,"url":null,"abstract":"Classification is one of the most commonly used data mining methods which can make a prediction by modeling from the known data. However, in traditional classification, we need to acquire the whole dataset and then build a training model which may take a lot of time and resource consumption. Another drawback of the traditional classification is that it cannot process the dataset timely and efficiently, especially for real-time data stream or big data. In this paper, we evaluate a lightweight method based on incremental learning algorithms for fast classification. We use this method to do outlier detection via several popular incremental learning algorithms, like Decision Table, Naïve Bayes, J48, VFI, KStar, etc.","PeriodicalId":311471,"journal":{"name":"2013 International Symposium on Computational and Business Intelligence","volume":"36 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Incremental Learning Algorithms for Fast Classification in Data Stream\",\"authors\":\"S. Fong, Zhicong Luo, B. W. Yap\",\"doi\":\"10.1109/ISCBI.2013.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification is one of the most commonly used data mining methods which can make a prediction by modeling from the known data. However, in traditional classification, we need to acquire the whole dataset and then build a training model which may take a lot of time and resource consumption. Another drawback of the traditional classification is that it cannot process the dataset timely and efficiently, especially for real-time data stream or big data. In this paper, we evaluate a lightweight method based on incremental learning algorithms for fast classification. We use this method to do outlier detection via several popular incremental learning algorithms, like Decision Table, Naïve Bayes, J48, VFI, KStar, etc.\",\"PeriodicalId\":311471,\"journal\":{\"name\":\"2013 International Symposium on Computational and Business Intelligence\",\"volume\":\"36 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Symposium on Computational and Business Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCBI.2013.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Symposium on Computational and Business Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCBI.2013.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

分类是最常用的数据挖掘方法之一,它可以通过对已知数据进行建模来进行预测。然而,在传统的分类中,我们需要获取整个数据集,然后建立训练模型,这可能会花费大量的时间和资源消耗。传统分类的另一个缺点是不能及时有效地处理数据集,特别是对于实时数据流或大数据。在本文中,我们评估了一种基于增量学习算法的轻量级快速分类方法。我们使用这种方法通过几种流行的增量学习算法(如Decision Table, Naïve Bayes, J48, VFI, KStar等)进行离群值检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental Learning Algorithms for Fast Classification in Data Stream
Classification is one of the most commonly used data mining methods which can make a prediction by modeling from the known data. However, in traditional classification, we need to acquire the whole dataset and then build a training model which may take a lot of time and resource consumption. Another drawback of the traditional classification is that it cannot process the dataset timely and efficiently, especially for real-time data stream or big data. In this paper, we evaluate a lightweight method based on incremental learning algorithms for fast classification. We use this method to do outlier detection via several popular incremental learning algorithms, like Decision Table, Naïve Bayes, J48, VFI, KStar, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信