网络课堂学生压力分析

Chhavi Sharma, Pranjal Saxena
{"title":"网络课堂学生压力分析","authors":"Chhavi Sharma, Pranjal Saxena","doi":"10.1109/GHCI50508.2021.9514059","DOIUrl":null,"url":null,"abstract":"This paper aims to identify the stress levels of students in Massive Open Online Courses(MOOCs). Research shows that there is a lack of sentiment analysis for online classes and hence a higher attrition rate. We thus aim to help instructors identify the stressed students. Using student posts from online platform “Piazza” as input, we perform various stress detection analysis methods like Naive Bayes, ANEW, VADER and SentiWords. These stressed posts from each method are extracted to compare accuracy with baseline dataset. This research provides unique solutions to detect the student sentiment in formal environment which can help reduce stress and improve the students’ overall performance.","PeriodicalId":378325,"journal":{"name":"2021 Grace Hopper Celebration India (GHCI)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stress Analysis for Students in Online Classes\",\"authors\":\"Chhavi Sharma, Pranjal Saxena\",\"doi\":\"10.1109/GHCI50508.2021.9514059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to identify the stress levels of students in Massive Open Online Courses(MOOCs). Research shows that there is a lack of sentiment analysis for online classes and hence a higher attrition rate. We thus aim to help instructors identify the stressed students. Using student posts from online platform “Piazza” as input, we perform various stress detection analysis methods like Naive Bayes, ANEW, VADER and SentiWords. These stressed posts from each method are extracted to compare accuracy with baseline dataset. This research provides unique solutions to detect the student sentiment in formal environment which can help reduce stress and improve the students’ overall performance.\",\"PeriodicalId\":378325,\"journal\":{\"name\":\"2021 Grace Hopper Celebration India (GHCI)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Grace Hopper Celebration India (GHCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GHCI50508.2021.9514059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Grace Hopper Celebration India (GHCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GHCI50508.2021.9514059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文旨在确定大规模在线开放课程(MOOCs)中学生的压力水平。研究表明,在线课程缺乏情感分析,因此流失率较高。因此,我们旨在帮助教师识别有压力的学生。以在线平台“Piazza”上的学生帖子为输入,我们进行了各种应力检测分析方法,如Naive Bayes, ANEW, VADER和SentiWords。从每种方法中提取这些应力桩,并与基线数据集进行精度比较。本研究为正式环境中学生情绪的检测提供了独特的解决方案,有助于减轻学生的压力,提高学生的整体表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stress Analysis for Students in Online Classes
This paper aims to identify the stress levels of students in Massive Open Online Courses(MOOCs). Research shows that there is a lack of sentiment analysis for online classes and hence a higher attrition rate. We thus aim to help instructors identify the stressed students. Using student posts from online platform “Piazza” as input, we perform various stress detection analysis methods like Naive Bayes, ANEW, VADER and SentiWords. These stressed posts from each method are extracted to compare accuracy with baseline dataset. This research provides unique solutions to detect the student sentiment in formal environment which can help reduce stress and improve the students’ overall performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信