{"title":"基于α形状模型的dna结合蛋白预测","authors":"Weiqiang Zhou, Hong Yan","doi":"10.1109/BIBM.2010.5706529","DOIUrl":null,"url":null,"abstract":"Previous studies about protein-DNA interaction focused on the bound structure of DNA-binding proteins and provided good but not practical results. In our work, we apply an alpha shape model to represent the surface structure of the protein-DNA complex and use structural alignment to develop an interface-atom curvature-dependent conditional probability discriminatory function for the prediction of unbound DNA-binding protein. The proposed method provides good performance in predicting unbound structure of DNA-binding protein which is potentially useful in many fields. Computer experiment results show that the curvature-dependent formalism with the optimal parameters can achieve sensitivity ranges from 48.08% to 44.23% and specificity ranges from 73.82% to 84.29%.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"637 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Prediction of DNA-binding protein based on alpha shape modeling\",\"authors\":\"Weiqiang Zhou, Hong Yan\",\"doi\":\"10.1109/BIBM.2010.5706529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous studies about protein-DNA interaction focused on the bound structure of DNA-binding proteins and provided good but not practical results. In our work, we apply an alpha shape model to represent the surface structure of the protein-DNA complex and use structural alignment to develop an interface-atom curvature-dependent conditional probability discriminatory function for the prediction of unbound DNA-binding protein. The proposed method provides good performance in predicting unbound structure of DNA-binding protein which is potentially useful in many fields. Computer experiment results show that the curvature-dependent formalism with the optimal parameters can achieve sensitivity ranges from 48.08% to 44.23% and specificity ranges from 73.82% to 84.29%.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"637 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of DNA-binding protein based on alpha shape modeling
Previous studies about protein-DNA interaction focused on the bound structure of DNA-binding proteins and provided good but not practical results. In our work, we apply an alpha shape model to represent the surface structure of the protein-DNA complex and use structural alignment to develop an interface-atom curvature-dependent conditional probability discriminatory function for the prediction of unbound DNA-binding protein. The proposed method provides good performance in predicting unbound structure of DNA-binding protein which is potentially useful in many fields. Computer experiment results show that the curvature-dependent formalism with the optimal parameters can achieve sensitivity ranges from 48.08% to 44.23% and specificity ranges from 73.82% to 84.29%.