基于超复杂Gabor分析的彩色人脸识别

Creed F. Jones, A. L. Abbott
{"title":"基于超复杂Gabor分析的彩色人脸识别","authors":"Creed F. Jones, A. L. Abbott","doi":"10.1109/FGR.2006.30","DOIUrl":null,"url":null,"abstract":"This paper explores the extraction of features from color imagery for recognition tasks, especially face recognition. The well-known Gabor filter, which is typically defined as a complex function, has been extended to the hypercomplex (quaternion) domain. Several proposed modes of this extension are discussed, and a preferred formulation is selected. To quantify the effectiveness of this novel filter for color-based feature extraction, an elastic graph implementation for human face recognition has been extended to color images, and performance of the corresponding monochromatic and color recognition systems have been compared. Our experiments have shown an improvement of 3% to 17% in recognition accuracy over the analysis of monochromatic images using complex Gabor filters","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Color face recognition by hypercomplex Gabor analysis\",\"authors\":\"Creed F. Jones, A. L. Abbott\",\"doi\":\"10.1109/FGR.2006.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the extraction of features from color imagery for recognition tasks, especially face recognition. The well-known Gabor filter, which is typically defined as a complex function, has been extended to the hypercomplex (quaternion) domain. Several proposed modes of this extension are discussed, and a preferred formulation is selected. To quantify the effectiveness of this novel filter for color-based feature extraction, an elastic graph implementation for human face recognition has been extended to color images, and performance of the corresponding monochromatic and color recognition systems have been compared. Our experiments have shown an improvement of 3% to 17% in recognition accuracy over the analysis of monochromatic images using complex Gabor filters\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

本文探讨了从彩色图像中提取特征用于识别任务,特别是人脸识别。众所周知的Gabor滤波器,通常被定义为一个复函数,已经扩展到超复(四元数)域。讨论了几种提出的扩展模式,并选择了一种优选的配方。为了量化这种新型滤波器在基于颜色的特征提取中的有效性,将人脸识别的弹性图实现扩展到彩色图像,并比较了相应的单色和彩色识别系统的性能。我们的实验表明,与使用复杂Gabor滤波器分析单色图像相比,识别精度提高了3%至17%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color face recognition by hypercomplex Gabor analysis
This paper explores the extraction of features from color imagery for recognition tasks, especially face recognition. The well-known Gabor filter, which is typically defined as a complex function, has been extended to the hypercomplex (quaternion) domain. Several proposed modes of this extension are discussed, and a preferred formulation is selected. To quantify the effectiveness of this novel filter for color-based feature extraction, an elastic graph implementation for human face recognition has been extended to color images, and performance of the corresponding monochromatic and color recognition systems have been compared. Our experiments have shown an improvement of 3% to 17% in recognition accuracy over the analysis of monochromatic images using complex Gabor filters
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信