一种实时PMU数据和神经网络分析电压稳定性的方法

H. Innah, T. Hiyama
{"title":"一种实时PMU数据和神经网络分析电压稳定性的方法","authors":"H. Innah, T. Hiyama","doi":"10.1109/APAP.2011.6180572","DOIUrl":null,"url":null,"abstract":"This paper proposes a Voltage Stability assessment of Power System in real time operation using Radial Basis Function Neural Network (RBF NN). One of the methods which widely used for assessing Voltage Stability is Index Stability (L-index). The indicator obtained from fundamental Kirchhoff Law which is simple in numerical calculation for steady state flow analysis. Input parameters for index calculation taken from real time measurement in the system which provides faster Recently, Phasor Measurement Units (PMUs) is a advanced method to get the information of system parameter in the wide operation with high rate data. Due to the uneconomical reason and unnecessary to place one bus for one PMU, therefore optimization placement has been applied. However, the selection of PMUs locations can be seen as a reduction of input parameters, which require for index stability calculation. To solve the lack of input parameter problem, a trained data of RBF NN has used to predict index stability. This study using 14 bus IEEE system to test the propose method and the result presents the performance of the network is sufficient to predict the index stability.","PeriodicalId":435652,"journal":{"name":"2011 International Conference on Advanced Power System Automation and Protection","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A real time PMU data and neural network approach to analyze voltage stability\",\"authors\":\"H. Innah, T. Hiyama\",\"doi\":\"10.1109/APAP.2011.6180572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a Voltage Stability assessment of Power System in real time operation using Radial Basis Function Neural Network (RBF NN). One of the methods which widely used for assessing Voltage Stability is Index Stability (L-index). The indicator obtained from fundamental Kirchhoff Law which is simple in numerical calculation for steady state flow analysis. Input parameters for index calculation taken from real time measurement in the system which provides faster Recently, Phasor Measurement Units (PMUs) is a advanced method to get the information of system parameter in the wide operation with high rate data. Due to the uneconomical reason and unnecessary to place one bus for one PMU, therefore optimization placement has been applied. However, the selection of PMUs locations can be seen as a reduction of input parameters, which require for index stability calculation. To solve the lack of input parameter problem, a trained data of RBF NN has used to predict index stability. This study using 14 bus IEEE system to test the propose method and the result presents the performance of the network is sufficient to predict the index stability.\",\"PeriodicalId\":435652,\"journal\":{\"name\":\"2011 International Conference on Advanced Power System Automation and Protection\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Advanced Power System Automation and Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APAP.2011.6180572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Advanced Power System Automation and Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APAP.2011.6180572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种基于径向基函数神经网络(RBF NN)的电力系统实时运行电压稳定性评估方法。指数稳定度(L-index)是目前广泛应用的电压稳定性评价方法之一。从基希霍夫定律得到的指标,在稳态流分析中数值计算简单。目前,相量测量单元(Phasor measurement Units, pmu)是一种获取系统大范围运行参数信息的先进方法,具有较高的数据速率。由于不经济的原因,不需要为一个PMU放置一个母线,因此采用了优化放置。然而,pmu位置的选择可以看作是输入参数的减少,这需要进行指数稳定性计算。为了解决输入参数不足的问题,利用训练好的RBF神经网络数据对指标稳定性进行预测。本研究利用14总线的IEEE系统对所提出的方法进行了测试,结果表明网络性能足以预测指标的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A real time PMU data and neural network approach to analyze voltage stability
This paper proposes a Voltage Stability assessment of Power System in real time operation using Radial Basis Function Neural Network (RBF NN). One of the methods which widely used for assessing Voltage Stability is Index Stability (L-index). The indicator obtained from fundamental Kirchhoff Law which is simple in numerical calculation for steady state flow analysis. Input parameters for index calculation taken from real time measurement in the system which provides faster Recently, Phasor Measurement Units (PMUs) is a advanced method to get the information of system parameter in the wide operation with high rate data. Due to the uneconomical reason and unnecessary to place one bus for one PMU, therefore optimization placement has been applied. However, the selection of PMUs locations can be seen as a reduction of input parameters, which require for index stability calculation. To solve the lack of input parameter problem, a trained data of RBF NN has used to predict index stability. This study using 14 bus IEEE system to test the propose method and the result presents the performance of the network is sufficient to predict the index stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信