程序输入统计回归的异构多核系统映射计算

J. C. R. Da Silva, Lorena Leão, V. Petrucci, A. Gamatie, Fernando Magno Quintão Pereira
{"title":"程序输入统计回归的异构多核系统映射计算","authors":"J. C. R. Da Silva, Lorena Leão, V. Petrucci, A. Gamatie, Fernando Magno Quintão Pereira","doi":"10.1145/3478288","DOIUrl":null,"url":null,"abstract":"A hardware configuration is a set of processors and their frequency levels in a multicore heterogeneous system. This article presents a compiler-based technique to match functions with hardware configurations. Such a technique consists of using multivariate linear regression to associate function arguments with particular hardware configurations. By showing that this classification space tends to be convex in practice, this article demonstrates that linear regression is not only an efficient tool to map computations to heterogeneous hardware, but also an effective one. To demonstrate the viability of multivariate linear regression as a way to perform adaptive compilation for heterogeneous architectures, we have implemented our ideas onto the Soot Java bytecode analyzer. Code that we produce can predict the best configuration for a large class of Java and Scala benchmarks running on an Odroid XU4 big.LITTLE board; hence, outperforming prior techniques such as ARM’s GTS and CHOAMP, a recently released static program scheduler.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping Computations in Heterogeneous Multicore Systems with Statistical Regression on Program Inputs\",\"authors\":\"J. C. R. Da Silva, Lorena Leão, V. Petrucci, A. Gamatie, Fernando Magno Quintão Pereira\",\"doi\":\"10.1145/3478288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hardware configuration is a set of processors and their frequency levels in a multicore heterogeneous system. This article presents a compiler-based technique to match functions with hardware configurations. Such a technique consists of using multivariate linear regression to associate function arguments with particular hardware configurations. By showing that this classification space tends to be convex in practice, this article demonstrates that linear regression is not only an efficient tool to map computations to heterogeneous hardware, but also an effective one. To demonstrate the viability of multivariate linear regression as a way to perform adaptive compilation for heterogeneous architectures, we have implemented our ideas onto the Soot Java bytecode analyzer. Code that we produce can predict the best configuration for a large class of Java and Scala benchmarks running on an Odroid XU4 big.LITTLE board; hence, outperforming prior techniques such as ARM’s GTS and CHOAMP, a recently released static program scheduler.\",\"PeriodicalId\":183677,\"journal\":{\"name\":\"ACM Trans. Embed. Comput. Syst.\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Embed. Comput. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3478288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3478288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

硬件配置是多核异构系统中的一组处理器及其频率级别。本文介绍了一种基于编译器的技术,用于将函数与硬件配置相匹配。这种技术包括使用多元线性回归将函数参数与特定硬件配置关联起来。通过表明该分类空间在实践中趋于凸,本文证明了线性回归不仅是将计算映射到异构硬件的有效工具,而且是有效的工具。为了证明多元线性回归作为一种对异构架构执行自适应编译的方法的可行性,我们已经在Soot Java字节码分析器上实现了我们的想法。我们生成的代码可以预测在Odroid XU4上运行的大型Java和Scala基准测试的最佳配置。小板;因此,优于先前的技术,如ARM的GTS和CHOAMP(最近发布的静态程序调度程序)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping Computations in Heterogeneous Multicore Systems with Statistical Regression on Program Inputs
A hardware configuration is a set of processors and their frequency levels in a multicore heterogeneous system. This article presents a compiler-based technique to match functions with hardware configurations. Such a technique consists of using multivariate linear regression to associate function arguments with particular hardware configurations. By showing that this classification space tends to be convex in practice, this article demonstrates that linear regression is not only an efficient tool to map computations to heterogeneous hardware, but also an effective one. To demonstrate the viability of multivariate linear regression as a way to perform adaptive compilation for heterogeneous architectures, we have implemented our ideas onto the Soot Java bytecode analyzer. Code that we produce can predict the best configuration for a large class of Java and Scala benchmarks running on an Odroid XU4 big.LITTLE board; hence, outperforming prior techniques such as ARM’s GTS and CHOAMP, a recently released static program scheduler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信