利用色散最小化方法对噪声模糊图像进行盲反卷积

C. Vural, W. Sethares
{"title":"利用色散最小化方法对噪声模糊图像进行盲反卷积","authors":"C. Vural, W. Sethares","doi":"10.1109/ICDSP.2002.1028208","DOIUrl":null,"url":null,"abstract":"In linear image restoration, the point spread function of the degrading system is assumed known even though this information is usually not available in real applications. As a result, both blur identification and image restoration must be performed from the observed noisy blurred image. This paper presents a computationally simple linear adaptive finite impulse response filter for blind image deconvolution. This is essentially a two-dimensional version of the constant modulus algorithm that is well known in the field of blind equalization. The two-dimensional extension is shown capable of reconstructing noisy blurred images using partial a priori information about the true image and the point spread function. The method is applicable to minimum as well as mixed phase blurs. Experimental results are provided.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"39 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Blind deconvolution of noisy blurred images via dispersion minimization\",\"authors\":\"C. Vural, W. Sethares\",\"doi\":\"10.1109/ICDSP.2002.1028208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In linear image restoration, the point spread function of the degrading system is assumed known even though this information is usually not available in real applications. As a result, both blur identification and image restoration must be performed from the observed noisy blurred image. This paper presents a computationally simple linear adaptive finite impulse response filter for blind image deconvolution. This is essentially a two-dimensional version of the constant modulus algorithm that is well known in the field of blind equalization. The two-dimensional extension is shown capable of reconstructing noisy blurred images using partial a priori information about the true image and the point spread function. The method is applicable to minimum as well as mixed phase blurs. Experimental results are provided.\",\"PeriodicalId\":351073,\"journal\":{\"name\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"volume\":\"39 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2002.1028208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在线性图像恢复中,假设退化系统的点扩展函数是已知的,尽管这个信息在实际应用中通常是不可用的。因此,必须对观测到的噪声模糊图像进行模糊识别和图像恢复。提出了一种计算简单的线性自适应有限脉冲响应滤波器,用于盲图像反卷积。这本质上是在盲均衡领域中众所周知的常模算法的二维版本。二维扩展能够利用真实图像的部分先验信息和点扩散函数重建噪声模糊图像。该方法既适用于最小相模糊,也适用于混合相模糊。给出了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind deconvolution of noisy blurred images via dispersion minimization
In linear image restoration, the point spread function of the degrading system is assumed known even though this information is usually not available in real applications. As a result, both blur identification and image restoration must be performed from the observed noisy blurred image. This paper presents a computationally simple linear adaptive finite impulse response filter for blind image deconvolution. This is essentially a two-dimensional version of the constant modulus algorithm that is well known in the field of blind equalization. The two-dimensional extension is shown capable of reconstructing noisy blurred images using partial a priori information about the true image and the point spread function. The method is applicable to minimum as well as mixed phase blurs. Experimental results are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信