梯度强度:一种新的基于互信息的配准方法

R. Shams, P. Sadeghi, R. Kennedy
{"title":"梯度强度:一种新的基于互信息的配准方法","authors":"R. Shams, P. Sadeghi, R. Kennedy","doi":"10.1109/CVPR.2007.383425","DOIUrl":null,"url":null,"abstract":"Conventional mutual information (Ml)-based registration using pixel intensities is time-consuming and ignores spatial information, which can lead to misalignment. We propose a method to overcome these limitation by acquiring initial estimates of transformation parameters. We introduce the concept of 'gradient intensity' as a measure of spatial strength of an image in a given direction. We determine the rotation parameter by maximizing the MI between gradient intensity histograms. Calculation of the gradient intensity MI function is extremely efficient. Our method is designed to be invariant to scale and translation between the images. We then obtain estimates of scale and translation parameters using methods based on the centroids of gradient images. The estimated parameters are used to initialize an optimization algorithm which is designed to converge more quickly than the standard Powell algorithm in close proximity of the minimum. Experiments show that our method significantly improves the performance of the registration task and reduces the overall computational complexity by an order of magnitude.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Gradient Intensity: A New Mutual Information-Based Registration Method\",\"authors\":\"R. Shams, P. Sadeghi, R. Kennedy\",\"doi\":\"10.1109/CVPR.2007.383425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional mutual information (Ml)-based registration using pixel intensities is time-consuming and ignores spatial information, which can lead to misalignment. We propose a method to overcome these limitation by acquiring initial estimates of transformation parameters. We introduce the concept of 'gradient intensity' as a measure of spatial strength of an image in a given direction. We determine the rotation parameter by maximizing the MI between gradient intensity histograms. Calculation of the gradient intensity MI function is extremely efficient. Our method is designed to be invariant to scale and translation between the images. We then obtain estimates of scale and translation parameters using methods based on the centroids of gradient images. The estimated parameters are used to initialize an optimization algorithm which is designed to converge more quickly than the standard Powell algorithm in close proximity of the minimum. Experiments show that our method significantly improves the performance of the registration task and reduces the overall computational complexity by an order of magnitude.\",\"PeriodicalId\":351008,\"journal\":{\"name\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2007.383425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

传统的基于互信息(Ml)的配准使用像素强度,耗时且忽略空间信息,可能导致不对齐。我们提出了一种通过获取变换参数的初始估计来克服这些限制的方法。我们引入了“梯度强度”的概念,作为给定方向上图像空间强度的度量。我们通过最大化梯度强度直方图之间的MI来确定旋转参数。梯度强度MI函数的计算非常高效。我们的方法对图像之间的缩放和平移具有不变性。然后,我们使用基于梯度图像质心的方法获得尺度和平移参数的估计。利用估计的参数初始化一个优化算法,该算法在接近最小值时比标准鲍威尔算法收敛得更快。实验表明,该方法显著提高了配准任务的性能,并将整体计算复杂度降低了一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient Intensity: A New Mutual Information-Based Registration Method
Conventional mutual information (Ml)-based registration using pixel intensities is time-consuming and ignores spatial information, which can lead to misalignment. We propose a method to overcome these limitation by acquiring initial estimates of transformation parameters. We introduce the concept of 'gradient intensity' as a measure of spatial strength of an image in a given direction. We determine the rotation parameter by maximizing the MI between gradient intensity histograms. Calculation of the gradient intensity MI function is extremely efficient. Our method is designed to be invariant to scale and translation between the images. We then obtain estimates of scale and translation parameters using methods based on the centroids of gradient images. The estimated parameters are used to initialize an optimization algorithm which is designed to converge more quickly than the standard Powell algorithm in close proximity of the minimum. Experiments show that our method significantly improves the performance of the registration task and reduces the overall computational complexity by an order of magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信