具有仿射过程的风险敏感投资管理:一种粘性方法

Mark H. A. Davis, Sébastien Lleo
{"title":"具有仿射过程的风险敏感投资管理:一种粘性方法","authors":"Mark H. A. Davis, Sébastien Lleo","doi":"10.1142/9789814304078_0001","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the jump-diffusion model proposed by Davis and Lleo to include jumps in asset prices as well as valuation factors. The criterion, following earlier work by Bielecki, Pliska, Nagai and others, is risk-sensitive optimization (equivalent to maximizing the expected growth rate subject to a constraint on variance.) In this setting, the Hamilton- Jacobi-Bellman equation is a partial integro-differential PDE. The main result of the paper is to show that the value function of the control problem is the unique viscosity solution of the Hamilton-Jacobi-Bellman equation.","PeriodicalId":286833,"journal":{"name":"arXiv: Portfolio Management","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Risk Sensitive Investment Management with Affine Processes: a Viscosity Approach\",\"authors\":\"Mark H. A. Davis, Sébastien Lleo\",\"doi\":\"10.1142/9789814304078_0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend the jump-diffusion model proposed by Davis and Lleo to include jumps in asset prices as well as valuation factors. The criterion, following earlier work by Bielecki, Pliska, Nagai and others, is risk-sensitive optimization (equivalent to maximizing the expected growth rate subject to a constraint on variance.) In this setting, the Hamilton- Jacobi-Bellman equation is a partial integro-differential PDE. The main result of the paper is to show that the value function of the control problem is the unique viscosity solution of the Hamilton-Jacobi-Bellman equation.\",\"PeriodicalId\":286833,\"journal\":{\"name\":\"arXiv: Portfolio Management\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789814304078_0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789814304078_0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们扩展了Davis和Lleo提出的跳跃-扩散模型,使其包括资产价格的跳跃和估值因素。根据Bielecki, Pliska, Nagai等人的早期工作,该标准是风险敏感优化(相当于在方差约束下最大化预期增长率)。在这种情况下,Hamilton- Jacobi-Bellman方程是一个偏积分微分偏微分方程。本文的主要结果是证明了控制问题的值函数是Hamilton-Jacobi-Bellman方程的唯一粘度解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Risk Sensitive Investment Management with Affine Processes: a Viscosity Approach
In this paper, we extend the jump-diffusion model proposed by Davis and Lleo to include jumps in asset prices as well as valuation factors. The criterion, following earlier work by Bielecki, Pliska, Nagai and others, is risk-sensitive optimization (equivalent to maximizing the expected growth rate subject to a constraint on variance.) In this setting, the Hamilton- Jacobi-Bellman equation is a partial integro-differential PDE. The main result of the paper is to show that the value function of the control problem is the unique viscosity solution of the Hamilton-Jacobi-Bellman equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信