一种新的PHD粒子滤波多目标状态估计算法

Lingling Zhao, Peijun Ma, Xiaohong Su, Hongtao Zhang
{"title":"一种新的PHD粒子滤波多目标状态估计算法","authors":"Lingling Zhao, Peijun Ma, Xiaohong Su, Hongtao Zhang","doi":"10.1109/ICIF.2010.5711923","DOIUrl":null,"url":null,"abstract":"Probability hypothesis density (PHD) filter is a new practical method to solve the unknown time-varying multi-target tracking problem. Particle filter implementation of the PHD filter has demonstrated a feasible suboptimal method for tracking multi-target in real-time. To obtain the target states, the peak-extraction from the posterior PHD particles needs to be implemented. A new state estimation method is proposed in this paper, which doesn't need to extract the PHD peaks. The method provides a single-target PHD expression derived from the updated PHD equation. The single-target PHD is approximated by the particles and their weights relevant to the observation. Thus the target states can be directly estimated from the single-target PHD sequentially. Simulation results demonstrate that the new algorithm provides more accurate state estimations and is more efficient than the traditional multi-target state estimation methods such as k-means clustering algorithm.","PeriodicalId":341446,"journal":{"name":"2010 13th International Conference on Information Fusion","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A new multi-target state estimation algorithm for PHD particle filter\",\"authors\":\"Lingling Zhao, Peijun Ma, Xiaohong Su, Hongtao Zhang\",\"doi\":\"10.1109/ICIF.2010.5711923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probability hypothesis density (PHD) filter is a new practical method to solve the unknown time-varying multi-target tracking problem. Particle filter implementation of the PHD filter has demonstrated a feasible suboptimal method for tracking multi-target in real-time. To obtain the target states, the peak-extraction from the posterior PHD particles needs to be implemented. A new state estimation method is proposed in this paper, which doesn't need to extract the PHD peaks. The method provides a single-target PHD expression derived from the updated PHD equation. The single-target PHD is approximated by the particles and their weights relevant to the observation. Thus the target states can be directly estimated from the single-target PHD sequentially. Simulation results demonstrate that the new algorithm provides more accurate state estimations and is more efficient than the traditional multi-target state estimation methods such as k-means clustering algorithm.\",\"PeriodicalId\":341446,\"journal\":{\"name\":\"2010 13th International Conference on Information Fusion\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2010.5711923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2010.5711923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

概率假设密度滤波是解决未知时变多目标跟踪问题的一种新的实用方法。粒子滤波实现了PHD滤波,为实时跟踪多目标提供了一种可行的次优方法。为了获得目标状态,需要对后验PHD粒子进行峰提取。本文提出了一种不需要提取PHD峰的状态估计方法。该方法提供了由更新的PHD方程推导出的单目标PHD表达式。单目标PHD由粒子及其与观测值相关的权重来近似。因此,可以直接从单目标PHD序列估计目标状态。仿真结果表明,与传统的多目标状态估计方法(如k-means聚类算法)相比,该算法具有更高的估计精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new multi-target state estimation algorithm for PHD particle filter
Probability hypothesis density (PHD) filter is a new practical method to solve the unknown time-varying multi-target tracking problem. Particle filter implementation of the PHD filter has demonstrated a feasible suboptimal method for tracking multi-target in real-time. To obtain the target states, the peak-extraction from the posterior PHD particles needs to be implemented. A new state estimation method is proposed in this paper, which doesn't need to extract the PHD peaks. The method provides a single-target PHD expression derived from the updated PHD equation. The single-target PHD is approximated by the particles and their weights relevant to the observation. Thus the target states can be directly estimated from the single-target PHD sequentially. Simulation results demonstrate that the new algorithm provides more accurate state estimations and is more efficient than the traditional multi-target state estimation methods such as k-means clustering algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信