Lingling Zhao, Peijun Ma, Xiaohong Su, Hongtao Zhang
{"title":"一种新的PHD粒子滤波多目标状态估计算法","authors":"Lingling Zhao, Peijun Ma, Xiaohong Su, Hongtao Zhang","doi":"10.1109/ICIF.2010.5711923","DOIUrl":null,"url":null,"abstract":"Probability hypothesis density (PHD) filter is a new practical method to solve the unknown time-varying multi-target tracking problem. Particle filter implementation of the PHD filter has demonstrated a feasible suboptimal method for tracking multi-target in real-time. To obtain the target states, the peak-extraction from the posterior PHD particles needs to be implemented. A new state estimation method is proposed in this paper, which doesn't need to extract the PHD peaks. The method provides a single-target PHD expression derived from the updated PHD equation. The single-target PHD is approximated by the particles and their weights relevant to the observation. Thus the target states can be directly estimated from the single-target PHD sequentially. Simulation results demonstrate that the new algorithm provides more accurate state estimations and is more efficient than the traditional multi-target state estimation methods such as k-means clustering algorithm.","PeriodicalId":341446,"journal":{"name":"2010 13th International Conference on Information Fusion","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A new multi-target state estimation algorithm for PHD particle filter\",\"authors\":\"Lingling Zhao, Peijun Ma, Xiaohong Su, Hongtao Zhang\",\"doi\":\"10.1109/ICIF.2010.5711923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probability hypothesis density (PHD) filter is a new practical method to solve the unknown time-varying multi-target tracking problem. Particle filter implementation of the PHD filter has demonstrated a feasible suboptimal method for tracking multi-target in real-time. To obtain the target states, the peak-extraction from the posterior PHD particles needs to be implemented. A new state estimation method is proposed in this paper, which doesn't need to extract the PHD peaks. The method provides a single-target PHD expression derived from the updated PHD equation. The single-target PHD is approximated by the particles and their weights relevant to the observation. Thus the target states can be directly estimated from the single-target PHD sequentially. Simulation results demonstrate that the new algorithm provides more accurate state estimations and is more efficient than the traditional multi-target state estimation methods such as k-means clustering algorithm.\",\"PeriodicalId\":341446,\"journal\":{\"name\":\"2010 13th International Conference on Information Fusion\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2010.5711923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2010.5711923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new multi-target state estimation algorithm for PHD particle filter
Probability hypothesis density (PHD) filter is a new practical method to solve the unknown time-varying multi-target tracking problem. Particle filter implementation of the PHD filter has demonstrated a feasible suboptimal method for tracking multi-target in real-time. To obtain the target states, the peak-extraction from the posterior PHD particles needs to be implemented. A new state estimation method is proposed in this paper, which doesn't need to extract the PHD peaks. The method provides a single-target PHD expression derived from the updated PHD equation. The single-target PHD is approximated by the particles and their weights relevant to the observation. Thus the target states can be directly estimated from the single-target PHD sequentially. Simulation results demonstrate that the new algorithm provides more accurate state estimations and is more efficient than the traditional multi-target state estimation methods such as k-means clustering algorithm.