{"title":"能源中心的能源、排放和成本优势研究:以多伦多为例","authors":"Qinghao Kong, M. Fowler, E. Entchev, H. Ribberink","doi":"10.1109/SEGE.2017.8052818","DOIUrl":null,"url":null,"abstract":"This work uses TRNSYS simulations with archetypal residential and commercial building energy demand data to evaluate the performance of a multi-building energy hub with a combined cooling, heating, and power (CCHP) system. Within this framework, conventional and combined heat and power (CHP) energy generation technologies are implemented in different scenarios to meet the cooling, heating, and domestic hot water demands of the energy hub system. Detailed system performances over the year are simulated using an annual simulation. The energy generation, environmental impact, and economic implications of the energy hub simulation results are analyzed and compared against the same multi-building system with independent heating, ventilation, and air conditioning (HVAC) systems. The results indicate that a combined system has potential benefits in local energy security, in emission reduction, and in lowering the operating costs of CHP systems in an energy hub as compared to independent systems. The results also indicate that application of CHP technology in a Toronto scenario results in a decrease in operational costs compared to a conventional HVAC system. Lastly, evaluation of the environmental impact of each simulated system indicates that the CHP system would increase emissions in an Ontario scenario.","PeriodicalId":404327,"journal":{"name":"2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of energy, emission, and cost advantages of energy hubs: A simulation case study for Toronto\",\"authors\":\"Qinghao Kong, M. Fowler, E. Entchev, H. Ribberink\",\"doi\":\"10.1109/SEGE.2017.8052818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work uses TRNSYS simulations with archetypal residential and commercial building energy demand data to evaluate the performance of a multi-building energy hub with a combined cooling, heating, and power (CCHP) system. Within this framework, conventional and combined heat and power (CHP) energy generation technologies are implemented in different scenarios to meet the cooling, heating, and domestic hot water demands of the energy hub system. Detailed system performances over the year are simulated using an annual simulation. The energy generation, environmental impact, and economic implications of the energy hub simulation results are analyzed and compared against the same multi-building system with independent heating, ventilation, and air conditioning (HVAC) systems. The results indicate that a combined system has potential benefits in local energy security, in emission reduction, and in lowering the operating costs of CHP systems in an energy hub as compared to independent systems. The results also indicate that application of CHP technology in a Toronto scenario results in a decrease in operational costs compared to a conventional HVAC system. Lastly, evaluation of the environmental impact of each simulated system indicates that the CHP system would increase emissions in an Ontario scenario.\",\"PeriodicalId\":404327,\"journal\":{\"name\":\"2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEGE.2017.8052818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEGE.2017.8052818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of energy, emission, and cost advantages of energy hubs: A simulation case study for Toronto
This work uses TRNSYS simulations with archetypal residential and commercial building energy demand data to evaluate the performance of a multi-building energy hub with a combined cooling, heating, and power (CCHP) system. Within this framework, conventional and combined heat and power (CHP) energy generation technologies are implemented in different scenarios to meet the cooling, heating, and domestic hot water demands of the energy hub system. Detailed system performances over the year are simulated using an annual simulation. The energy generation, environmental impact, and economic implications of the energy hub simulation results are analyzed and compared against the same multi-building system with independent heating, ventilation, and air conditioning (HVAC) systems. The results indicate that a combined system has potential benefits in local energy security, in emission reduction, and in lowering the operating costs of CHP systems in an energy hub as compared to independent systems. The results also indicate that application of CHP technology in a Toronto scenario results in a decrease in operational costs compared to a conventional HVAC system. Lastly, evaluation of the environmental impact of each simulated system indicates that the CHP system would increase emissions in an Ontario scenario.